Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
151
всего попыток:
274
Найдите наименьшее натуральное значение x, удовлетворяющее уравнению [10n/x]=2009 при некотором натуральном значении n. ([y] — это целая часть y, т.е. наибольшее целое число, не превосходящее y.)
Задачу решили:
133
всего попыток:
154
Найдите площадь треугольника по радиусам его трёх вневписанных окружностей: ra=4, rb=6, rс=12 (ra — это радиус окружности, которая касается стороны a и продолжений сторон b и c).
Задачу решили:
589
всего попыток:
697
"Как-то в 2007 году, — вспоминает Вовочка, — я выписал подряд все свои оценки по пению, полученные в четверти, и между некоторыми из них поставил знак умножения. Когда я перемножил числа, то получил в произведении 2007. Помню, что оценки "единица" не было. Как вы думаете, что мне поставили по пению в той четверти?" Дробных оценок в четверти не бывает!
Задачу решили:
277
всего попыток:
480
Какое наибольшее количество месяцев одного года могут иметь по 5 пятниц?
Задачу решили:
202
всего попыток:
345
Сколько различных решений имеет уравнение: 24x6−4x5−78x4+29x3+56x2−42x+8=0?
Задачу решили:
177
всего попыток:
323
Если p и p+2 — простые числа, то они называются близнецами. Две пары близнецов: p, p+2, p+6 и p+8 (все — простые!) назовём квартетом. А на какое наибольшее число в этом случае всегда делится число p+4 при p>5?
Задачу решили:
180
всего попыток:
231
Квадрат со стороной 60 вписан в окружность. Найдите сторону квадрата, вписанного в один из полученных сегментов.
Задачу решили:
78
всего попыток:
241
Если p и p+2 — простые числа, то они называются близнецами. Две пары близнецов: p, p+2, p+6 и p+8 (все — простые!) назовём квартетом, а p — его основанием. А как близко друг к другу могут находиться два квартета, т.е. чему равно минимальное значение p−q, где p>q>5 — основания двух квартетов?
Задачу решили:
78
всего попыток:
135
Стороны AB, BC и CA треугольника ABC равны 684, 780 и 816 соответственно, а высоты AM и BN пересекаются в точке H. Найдите радиус окружности, проходящей через точки M, N и середину отрезка CH.
Задачу решили:
112
всего попыток:
150
Найдите остаток от деления числа (2010!)2011 на 2011 (n! означает произведение всех натуральных чисел от 1 до n).
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|