Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
59
всего попыток:
154
По окружности расставлены 30 фишек: 20 белых и 10 чёрных. За один ход разрешается поменять местами любые две фишки, между которыми стоят ещё три фишки. Две расстановки фишек называются эквивалентными, если одну из них можно получить из другой несколькими такими ходами. Вопрос: сколько существует НЕэквивалентных расстановок?
Задачу решили:
209
всего попыток:
247
Найдите все простые p и q, для которых выполняется равенство p+q=(p−q)3. В ответе укажите сумму всех таких p и q.
Задачу решили:
552
всего попыток:
590
Число а сложили с самим собой и получили число b. Потом число a умножили само на себя и получили число c. У числа b переставили цифры и получили число d. Когда перемножили c и d, то получилось 2009. Чему же равно a?
Задачу решили:
198
всего попыток:
755
Какое максимальное количество шаров диаметра 1 можно уложить в коробку размерами 10х10х1?
Задачу решили:
421
всего попыток:
655
В ряд выписаны числа: 1, 2, 3, 4, 5, 6. За один ход разрешается либо прибавить к любым двум числам по единице, либо отнять от любых двух чисел по единице. За какое минимальное число ходов можно получить строку из одних пятёрок? Если Вы считаете, что это невозможно, то введите 0.
Задачу решили:
198
всего попыток:
269
Стороны треугольника — последовательные целые числа. Найдите эти стороны, если известно, что одна из его биссектрис перпендикулярна одной из его медиан. В ответе укажите сумму сторон треугольника.
Задачу решили:
178
всего попыток:
391
Сколькими нулями оканчивается число (20092)! (n! - это произведение всех натуральных чисел от 1 до n). Ответ "много" - не засчитывается!
Задачу решили:
272
всего попыток:
297
В равнобедренной трапеции средняя линия равна 10, а диагонали взаимно перпендикулярны. Найти площадь трапеции.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|