Лента событий:
fortpost решил задачу "Плохое место" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
31
всего попыток:
42
Представить в конечном виде: Cn0·xn−Cn1·(x−1)n+Cn2·(x−2)n−Cn3·(x−3)n+...+(−1)n·Cnn·(x−n)n, где Cnk=n!/(k!·(n-k)!), n!=1·2·3·...·n, а 0!=1.
Задачу решили:
135
всего попыток:
189
Найти площадь треугольника, высоты которого равны: 12, 63/5, 252/13.
Задачу решили:
170
всего попыток:
208
В треугольник вписана окружность радиуса 12. Чему равен минимальный радиус описанной окружности?
Задачу решили:
52
всего попыток:
284
Перед двумя игроками 3 кучки спичек. В первой кучке 111 спичек, во второй — 114, а в третьей — 116 спичек. Каждый из игроков своим ходом берёт из любой (но только одной!) кучки произвольное целое число спичек от 1 до 11 включительно. Ходы делаются по очереди, а выигрывает тот, кто возьмёт последнюю спичку со стола. Сколько спичек и из какой кучки должен взять первый игрок в начале игры, чтобы обеспечить себе победу при любых ходах второго игрока? В ответе напишите подряд, без пробелов, номер кучки и количество спичек.
Задачу решили:
236
всего попыток:
403
В разных точках на шесте длиной 1 метр сидят муравьи. В какой-то момент все они одновременно начинают бежать вдоль шеста с одной и той же скоростью 1 метр в минуту (каждый бежит в одном из двух возможных направлений). Муравей, добежавший до конца шеста, спрыгивает с него на землю. А вот если два муравья сталкиваются, то каждый из них мгновенно разворачивается и бежит с той же скоростью, но в противоположном направлении. Через какое максимальное число секунд все муравьи спрыгнут с шеста? (Если Вы считаете, что движение может продолжаться до бесконечности, введите 0.)
Задачу решили:
341
всего попыток:
379
Два велосипедиста одновременно стартовали на двух разных, но пересекающихся дорогах. Оба едут с постоянной скоростью 10 км/ч в сторону перекрёстка, где их дороги пересекаются. В момент старта один из велосипедистов находился на расстоянии 50 км от перекрёстка, а другой — на расстоянии 30 км от перекрёстка. Через сколько часов после старта оба велосипедиста будут на одинаковом расстоянии от перекрёстка?
Задачу решили:
105
всего попыток:
227
Жили были три поросёнка. Один из них всегда говорит правду, другой всегда врёт, а третий — дипломат: может и правду сказать, и соврать. Но неизвестно, кто есть кто. Они же, как водится в таких задачах, всё знают друг про друга. Какое наименьшее число вопросов типа "да–нет" нужно задать, чтобы наверняка узнать, кто есть кто? Каждый вопрос можно задавать любому (но только одному!) поросёнку.
Задачу решили:
74
всего попыток:
262
Сколько положительных действительных решений имеет каждое из следующих уравнений: Напишите оба числа подряд, без пробелов. Порядок "многоэтажного" возведения в степень — сверху вниз. Формально в левой части каждого из уравнений написан предел:
Задачу решили:
175
всего попыток:
314
Есть весы, показывающие точный вес, и 6 одинаковых на вид монет, одна из которых фальшивая: её вес отличается от веса настоящей монеты (веса настоящих монет одинаковы). За какое наименьшее число взвешиваний можно наверняка определить вес настоящей монеты и вес фальшивой?
Задачу решили:
77
всего попыток:
279
Даны четырёхугольник ABCD, в котором ΑΒ=25, BC=17, CD=26, DA=15; и ещё две точки: точка E на стороне AB и точка F на стороне CD такие, что AE=10, EB=15, CF=9 и FD = 17. Пусть K - точка пересечения отрезков AF и DE, L - точка пересечения отрезков EC и BF, M - точка пересечения отрезков AC и BD. Чему равен угол KML (в градусах, округляя до целого числа)?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|