Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
44
всего попыток:
158
Рассмотрим на плоскости все такие треугольники, что координаты двух их вершин задаются целыми положительными числами не больше 10, а третья их вершина - начало координат (0,0). Сколько из них имеют целочисленную площадь?
Задачу решили:
77
всего попыток:
126
Рассмотрим ряд Тейлора функции: f(x) = 1/(1-x-x²) в окрестности x=0. Чему равен коэффициент этого ряда при x10?
Задачу решили:
21
всего попыток:
129
A - основание 4-угольной пирамиды. B, C, D, E - её боковые грани. B и D - две противоположные боковые грани (так же как и C и E). Их углы с основанием A: α - угол между гранью B и основанием A. β - угол между гранью D и основанием A. x - сумма углов α и β, выраженных в градусах. Какое максимальное целое значение может принимать x?
Задачу решили:
24
всего попыток:
69
Доска 16х16 разделена на квадраты со стороной длины 1. Сколько сушествует троек различных узлов доски, через которые проходит парабола?
Задачу решили:
67
всего попыток:
164
Если x=0,99999999999999999999 (двадцать девяток после запятой), то чему равна целая часть значения выражения: x/1 + x2/2 + x3/3 + . . . ?
Задачу решили:
24
всего попыток:
78
Найдите в порядке возрастания 2020-е число среди всех натуральных чисел, сумма цифр которых равна 2020.
Задачу решили:
28
всего попыток:
49
Окружность x2+y2=1 растянули в два раза по горизонтали и получили эллипс x2+4y2=4. При этом действии, площадь фигуры, ограниченной кривой, выросла в два раза. А во сколько раз выросла длина кривой? Ответ округлите до 5-и десятичных знаков после запятой.
Задачу решили:
18
всего попыток:
36
Сколько существует квадратов, вершины которых находятся на узлах точечной сетки 100x2021? На рисунке изображён пример квадрата в точечной сетке 5x8.
Задачу решили:
16
всего попыток:
38
На плоскости в узлах правильной треугольной решетки расположены точки так, что их множество образует правильный шестиугольник. На стороне этого шестиугольника 10 точек (рис. для 4 точек). Сколько попарно неконгруэнтных правильных шестиугольников определяют эти точки?
Задачу решили:
23
всего попыток:
30
В правильной треугольной призме ABCA’B’C’ на рёбрах AA’, BB’, CC’ отмечены соответственно точки A’’, B’’, C’’ так, что: Найдите соотношение объёма многогранника ABCA’’B’’C’’ к объёму призмы.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|