Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
44
всего попыток:
158
Рассмотрим на плоскости все такие треугольники, что координаты двух их вершин задаются целыми положительными числами не больше 10, а третья их вершина - начало координат (0,0). Сколько из них имеют целочисленную площадь?
Задачу решили:
37
всего попыток:
101
Функция Эйлера φ(n) определена для каждого натурального числа n как количество натуральных чисел, непревосходящих n, взаимно простых с n. Найдите сумму всех натуральных чисел n, для которых φ(n)=128.
Задачу решили:
36
всего попыток:
65
Внутри некоторого выпуклого 13-угольника нет ни одной точки, через которой проходят 3 (или больше) его диагоналей. Сколько всего точек пересечения диагоналей есть внутри этого многоугольника?
Задачу решили:
18
всего попыток:
36
Сколько существует квадратов, вершины которых находятся на узлах точечной сетки 100x2021? На рисунке изображён пример квадрата в точечной сетке 5x8.
Задачу решили:
17
всего попыток:
62
На шахматной доске n на n расставлены n2 ферзей n различных цветов, по n ферзей каждого цвета. Каждый ферзь стоит на отдельной клетке, и ни один ферзь не стоит ни на той же горизонтали, ни на той же вертикали, ни на той же диагонали (большой или маленькой) что другой ферзь того же цвета. На рисунке показан пример такой расстановки ферзей для n=5: Найдите 4 наименьших натуральных числа n, для которых это возможно. Укажите в ответе их сумму.
Задачу решили:
8
всего попыток:
19
Из бумаги склеили правильный тетраэдр. Затем на его поверхности последовательно сделали n разрезов в форме отрезков прямых, в результате чего она распалась на m частей, которыми удалось оклеить без просветов и наложений 3 одинаковых правильных тетраэдра, не имеющих общих точек. Найдите минимально возможное значение 100m + n. Замечание: разрезания разрешено чередовать с развёртыванием исходного тетраэдра.
Задачу решили:
16
всего попыток:
38
На плоскости в узлах правильной треугольной решетки расположены точки так, что их множество образует правильный шестиугольник. На стороне этого шестиугольника 10 точек (рис. для 4 точек). Сколько попарно неконгруэнтных правильных шестиугольников определяют эти точки?
Задачу решили:
24
всего попыток:
35
Наибольший собственный делитель натурального числа n больше на 2, чем квадрат наименьшего составного делителя n. Найдите сумму всех таких натуральных n.
Задачу решили:
11
всего попыток:
17
4 параллельных прямых расположены на плоскости одна за другой на одинаковых растояниях. 4 других параллельных прямых, не параллельных предыдущим прямым, также расположены на той же плоскости одна за другой на одинаковых растояниях. Наконец, третья группа 4-х параллельных прямых, не параллельных предыдущим, тоже расположены на той же плоскости одна за другой на одинаковых растояниях. Эти 12 прямых делят плоскость на n областей. Найдите сумму всех возможных значений n.
Задачу решили:
14
всего попыток:
18
Назовём натуральное число остроумным, если оно начинается с цифры 5, оканчивается цифрой 1, а все остальные его цифры равны 6. Найдите количество натуральных чисел n, взаимно простых с 10 и не превосходящих 1016, для которых найдётся остроумное число, кратное n.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|