Лента событий:
vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
44
всего попыток:
158
Рассмотрим на плоскости все такие треугольники, что координаты двух их вершин задаются целыми положительными числами не больше 10, а третья их вершина - начало координат (0,0). Сколько из них имеют целочисленную площадь?
Задачу решили:
24
всего попыток:
69
Доска 16х16 разделена на квадраты со стороной длины 1. Сколько сушествует троек различных узлов доски, через которые проходит парабола?
Задачу решили:
19
всего попыток:
41
Рассмотрим число n=1096375199328173. Рассмотрим все натуральные числа от 1 до n-1 включительно. Рассмотрим остатки от деления квадратов этих чисел на n. Сколько всего получится различных остатков?
Задачу решили:
28
всего попыток:
57
Рассмотрим число n=106. Найдите сумму:
Задачу решили:
37
всего попыток:
101
Функция Эйлера φ(n) определена для каждого натурального числа n как количество натуральных чисел, непревосходящих n, взаимно простых с n. Найдите сумму всех натуральных чисел n, для которых φ(n)=128.
Задачу решили:
36
всего попыток:
65
Внутри некоторого выпуклого 13-угольника нет ни одной точки, через которой проходят 3 (или больше) его диагоналей. Сколько всего точек пересечения диагоналей есть внутри этого многоугольника?
Задачу решили:
97
всего попыток:
109
В соревновании участвовало 20 спортсменов. Каждому из них было предложено заранее угадать, какое место он займёт. Петя сказал, что он займёт последнее место. 19 спортсменов заняли места похуже, чем они предполагали. Какое место занял Петя?
Задачу решили:
28
всего попыток:
53
Назовём натуральное число интересным, если его запись в десятичной системе счисления состоит из чётного количества цифр и его «левая половина» равна его «правой половине». Например, 2020 - это интересное число. Найдите наименьшее интересное число, являющееся квадратом целого числа.
Задачу решили:
24
всего попыток:
78
Найдите в порядке возрастания 2020-е число среди всех натуральных чисел, сумма цифр которых равна 2020.
Задачу решили:
19
всего попыток:
44
Расмотрим простое число p=1000000007=109+7 и все целые числа n, которые не делятся на p. Какие значения, не превосходящие 14, может принимать остаток от деления n2 на p? Введите ответ в виде строки из 14-и НУЛЕЙ и ЕДИНИЦ, где на k-м месте (слева) стоит ЕДИНИЦА, если остаток от деления n2 на p может принимать значение k, а в противном случае - НОЛЬ.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|