Лента событий:
Sam777e решил задачу "Дырявый квадрат-3" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
29
всего попыток:
64
У четырёх прямоугольников соотношения длин сторон: 1:a1, 1:a2, 1:a3, 1:a4, где a1 < a2 < a3 < a4. – натуральные числа. Углы между диагональю и большой стороной - соответственно равны α1, α2, α3, α4, при этом α1 + α2 + α3 + α4 = π/4. Сколько существует таких наборов натуральных чисел {a1, a2, a3, a4}?
Это открытая задача
(*?*)
Найдите наименьший положительный корень уравнения: 8x3-6x+1=0. Напишите точный ответ в виде математического выражения без кубических корней.
Задачу решили:
38
всего попыток:
44
Три деда примерно одного возраста (разность их возрастов не более 10 лет). Их возрасты – натуральные числа, являющиеся корнями уравнения: x3 - Ax2 + 14838x – C = 0, где A и C - также натуральные числа. Найдите число C.
Задачу решили:
41
всего попыток:
115
Найдите количество комплексных чисел a+bi (a и b - целые), для которых существует комплексное число c+di (c и d - тоже целые), таких, что произведение: (a+bi)(c+di) = 16.
Задачу решили:
97
всего попыток:
109
В соревновании участвовало 20 спортсменов. Каждому из них было предложено заранее угадать, какое место он займёт. Петя сказал, что он займёт последнее место. 19 спортсменов заняли места похуже, чем они предполагали. Какое место занял Петя?
Задачу решили:
45
всего попыток:
59
Элементы квадратной матрицы 3 на 3 - различные действительные числа. Произведения трёх элементов каждой строки, каждого столбца и каждой большой диагонали равны одному и тому же натуральному числу. Какое минимально возможное значение этого натурального числа?
Задачу решили:
71
всего попыток:
89
На какое максимальное количество треугольников можно разрезать 4-угольник одной прямой?
Задачу решили:
25
всего попыток:
31
Построили прямоугольный треугольник OA0A1 (угол OA0A1 - прямой). Затем построили прямоугольный треугольник OA1A2 (угол OA1A2 - прямой), точки A0 и A2 находятся с разных сторон отрезка OA1, длины отрезков: |OA1|² = |OA0| • |OA2|. Затем построили прямоугольный треугольник OA2A3 (угол OA2A3 - прямой), точки A1 и A3 находятся на разных сторонах отрезка OA2, длины отрезков: |OA2|² = |OA1| • |OA3|. И так далее, несколько раз.
Сумма углов A0OA1 + A1OA2 + A2OA3 + . . . = 360°
Оказалось, что гипотенуза последнего треугольника лежит на отрезке OA0 (содержит его) и ровно в k раз длинее него, где k - целое число.
Найдите сумму всевозможных значений k.
Задачу решили:
61
всего попыток:
66
Стёрка, карандаш и тетрадь стоят вместе 100 монет. Тетрадь стоит больше чем два карандаша. Три карандаша стоят больше чем четыре стёрки. Три стёрки стоят больше чем тетрадь. Сколько монет стоит тетрадь?
Задачу решили:
23
всего попыток:
31
В квадрате ABCD помечены середины всех 4-х его сторон. Какое минимальное количество линий нужно провести с помощью линейки без делений, чтобы разделить квадрат на 5 равновеликих частей?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|