Лента событий:
vochfid решил задачу "Дырявый квадрат-3" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
55
всего попыток:
659
В одном плоском лесу есть бесконечно много деревьев. Расстояние между любыми двумя деревьями - целое число метров. Рассмотрим три дерева, стояших в точках A, B и C. Какое минимально возможное положительное значение угла ABC в градусах?
Задачу решили:
45
всего попыток:
196
Рассмотрим множество парабол, уравнения которых имеют вид y=ax²+b, где a и b принимают все целые значения от 1 до 10 включительно. Т.е. всего 100 парабол. Сколько в этом множестве пар подобных парабол?
Задачу решили:
4
всего попыток:
53
Дан квадрат ABCD. Какое минимальное количество прямых нужно провести с помощью линейки без делений, чтобы разделить его на 5 равновеликих частей?
Задачу решили:
24
всего попыток:
75
Сколько существует различных (попарно не конгруэнтных) треугольников, площадь которых и площади квадратов, построенных на их сторонах, - целые числа, не превосходящие 10?
Задачу решили:
33
всего попыток:
50
Найдите площадь фигуры, ограниченной кривой: 13x2 + 10xy + 13y2 = 72. Ответ округлите до двух знаков после запятой.
Задачу решили:
21
всего попыток:
36
Квадрат имеет сторону длины n, n∈N. Все стороны квадрата разделены точками на единичные отрезки. В этот квадрат вписаны n-1 квадратов, все вершины которых находятся в точках деления. При этом исходный квадрат оказался разделен на части. Найдите соотношение плошади полученной в центре части к площади исходного квадрата, когда n стремится к бесконечности. В ответе укажите целую часть этого соотношения, умноженного на 10000. На рисунке приведен квадрат со стороной 40, в который вписаны 39 меньших квадратов.
Задачу решили:
13
всего попыток:
29
Правильный пятиугольник имеет сторону длины n, n∈N. Все стороны пятиугольника разделены точками на единичные отрезки. В этот пятиугольник вписаны n-1 правильных пятиугольников, все вершины которых находятся в точках деления. На рисунке приведен правильный пятиугольник со стороной 7, в который вписаны 6 меньших правильных пятиугольников. Найдите количество таких n (1<n<200), для которых количество полученных частей НЕ равно 5*(n-1)2+1.
Задачу решили:
21
всего попыток:
31
Найдите наименьшее целое число L, что в квадрат L × L можно поместить прямоугольник 1 × 2024. С НОВЫМ ГОДОМ!
Задачу решили:
18
всего попыток:
23
Прямоугольник размера N x 1 помещается в прямоугольнике размера L x K. Определим функцию f(K, L) как наибольшее целое N. Найдите сумму: f(1, 6) + f(2, 6) + f(3, 6) + f(4, 6) + f(5, 6) + f(6, 6).
Задачу решили:
17
всего попыток:
19
Прямоугольник размера N x 1 помещается в прямоугольнике размера L x K. Определим функцию f(K, L) как наибольшее целое N. Найдите f(9, 12) + f(9, 13).
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|