img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 170
всего попыток: 208
Задача опубликована: 14.12.09 10:00
Прислал: TALMON img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: fcsm77

В треугольник вписана окружность радиуса 12. Чему равен минимальный радиус описанной окружности?

Задачу решили: 63
всего попыток: 172
Задача опубликована: 30.12.10 16:19
Прислал: TALMON img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

Даны две параллельные прямые, расстояние между которыми — целое число. На одной прямой находится точка A, а на другой — точки B, C, D, E (именно в таком порядке). Расстояние между любыми двумя из этих пяти точек — натуральное число, BC=4. Найдите наименьшее расстояние между A и E.

Задачу решили: 36
всего попыток: 193
Задача опубликована: 16.01.11 08:00
Прислал: TALMON img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Timur

Три окружности, радиусы которых равны 418, 2090 и 3135, касаются друг друга в трёх различных точках. Радиус четвёртой окружности, касающейся всех первых трёх окружностей, равен R. Чему равна сумма всевозможных значений R?

Задачу решили: 66
всего попыток: 88
Задача опубликована: 08.06.12 08:00
Прислал: TALMON img
Источник: Литовская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: 0Vlas

Площадь четырёхугольника равна 67. Найдите минимально возможное значение суммы произведений длин его противоположных сторон (т.е. выражения ac+bd, если одна пара противоположных сторон имеет длины a и c, а другая пара - b и d).

Задачу решили: 35
всего попыток: 200
Задача опубликована: 27.03.13 08:00
Прислал: TALMON img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

В некоторых геометрических построениях с помощью циркуля и линейки можно обойтись одним циркулем или одной линейкой.

Рассмотрим множество всех таких натуральных чисел n>1, которые удовлетворяют следующему условию: с помощью одной линейки можно разделить сторону заданного (уже нарисованного) прямоугольника на n равных частей.

Какие натуральные числа 1<n<22 принадлежат этому множеству? Укажите в ответе их сумму.

Задачу решили: 27
всего попыток: 139
Задача опубликована: 21.02.14 08:00
Прислал: TALMON img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Dremov_Victor (Виктор Дремов)

Рассмотрим простое число p и трёхчлен:

2x² + 11x + 1.

Обозначим:

f(p) - количество целых неотрицательных x, не превосходящих p, при которых трёхчлен делится на p.

g(p) - сумма всех этих x для данного p.

Найдите сумму g(p) по всем таким p, для которых f(p)=1.

Задачу решили: 8
всего попыток: 185
Задача опубликована: 19.07.15 08:00
Прислал: TALMON img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

При некоторых положениях трёх стрелок часов (будем считать, что все стрелки двигаются плавно), одна из стрелок делит попалам угол между двумя другими стрелками. Сколько существует таких положений?

[Угол α между двумя другими стрелками будем считать только: 0°<α<180°, и стрелка-биссектриса делит его на два одинаковых угла 0°<α/2<90°]

Пример искомого положения можно наблюдать ровно в 1:12:00.

Задачу решили: 21
всего попыток: 30
Задача опубликована: 29.06.18 08:00
Прислал: TALMON img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: snape

Найдите минимальное натуральное число n, такое, что ровно одна четвёртая всех натуральных чисел от 1 до n включительно не содержат цифру 0.

Задачу решили: 25
всего попыток: 64
Задача опубликована: 03.12.18 08:00
Прислал: TALMON img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: mikev

На плоскости проведены три прямые, не пересекающиеся в одной точке. Известно, что радиусы всех окружностей, касающиеся всех трёх прямых - целые числа. Радиусы двух из этих окружностей равны 4 и 22. Найдите сумму радиусов всех остальных окружностей, касающихся тех же трёх прямых.

Задачу решили: 13
всего попыток: 21
Задача опубликована: 14.05.21 08:00
Прислал: TALMON img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: логикаimg, игрыimg
Лучшее решение: Vkorsukov

На левом чертеже содержится большое количество различных n-угольников для различных n. На правом чертеже показан пример одного n-угольника для n=10.

n-многоугольник

Найдите максимально возможное n.

Ответ необходимо обосновать: показать, что многоугольник с найденным вами количеством сторон n существует, и доказать, что это n является максимальным.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.