Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
22
всего попыток:
26
Если стороны треугольника равны a, b, c, и радиусы вписанной и описанной окружностей равны r и R, то выражение: Обозначим:
Задачу решили:
20
всего попыток:
60
Найдите количество натуральных чисел n, удовлетворяющих следующим условиям:
Задачу решили:
21
всего попыток:
41
Найдите наибольшее натуральное число, имеющее ровно 5 различных трёхзначных делителей и не имеющее собственных делителей большей значности.
Задачу решили:
10
всего попыток:
21
В выпуклом четырёхугольнике Q два противоположных угла прямые. Смежные стороны, образующие один из этих углов, равны между собой. Смежные стороны, образующие другой из этих углов, не равны между собой. Обозначим: m – длина стороны квадрата, равновеликого четырёхугольнику Q. Для каждой точки M на периметре Q определим: f(M) – количество таких точек P на периметре Q, что |MP|=m. Например, для точки M, изображённой на рисунке: есть ровно две точки P1 и P2, расстояние которых до M равно m. Следовательно, для этой точки M имеет место f(M)=2. Для каждого целого числа k определим функцию g(k) таким образом: Найдите сумму k*g(k) по всем k.
Задачу решили:
13
всего попыток:
14
Кривая дракона – это рекурсивная ломаная, которая, начиная с единичного отрезка, за каждую итерацию удваивает свою длину, путем добавления к себе предыдущей части, повернутой на 90°. Рассмотрим вариант построения этой ломаной, когда добавляемая предыдущая часть поворачивается на 90° по и против часовой стрелки попеременно. На рисунке приведена такая кривая после четырёх итераций. Эта ломаная помещается в наименьший прямоугольник размером 3х4 и площадью 12. Какова площадь наименьшего прямоугольника, в котором помещается такая кривая после 11 итераций? Рассматриваются прямоугольники, стороны которых параллельны соответствующим звеньям кривой дракона.
Задачу решили:
11
всего попыток:
13
Кривая дракона – это рекурсивная ломаная, которая, начиная с единичного отрезка, за каждую итерацию удваивает свою длину, путем добавления к себе предыдущей части, повернутой на 90°. Рассмотрим вариант построения этой ломаной, когда добавляемая предыдущая часть поворачивается на 90° по и против часовой стрелки попеременно. На рисунке приведена такая кривая после четырёх итераций. Она образовала 3 замкнутых единичных квадрата. Сколько замкнутых единичных квадратов будет образовано после 11 итераций?
Задачу решили:
18
всего попыток:
27
В двух стаканах находится n и m мл воды, где 0<n<m и n+m≤200. Разрешена такая операция: количество воды в стакане можно удвоить, переливая из другого стакана, в котором для этого достаточно воды. Цель: посредством таких операций полностью опорожнить один стакан. Найдите число пар целых чисел n и m, для которых цель может быть достигнута.
Задачу решили:
25
всего попыток:
63
Сколько целых значений может иметь длина биссектрисы AD треугольника ABC, если |AB|=45 и |AC|=29 ?
Задачу решили:
6
всего попыток:
21
Ребра правильного тетраэдра поделены на 6 равных частей. Провели всевозможные плоскости, проходящие через точки деления и параллельные граням тетраэдра, а также четыре плоскости, содержащие сами грани тетраэдра. На какое количество частей эти плоскости разбивают пространство?
Задачу решили:
24
всего попыток:
35
Наибольший собственный делитель натурального числа n больше на 2, чем квадрат наименьшего составного делителя n. Найдите сумму всех таких натуральных n.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|