img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: DOMASH предложил задачу "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 5
всего попыток: 14
Задача опубликована: 02.09.20 08:00
Прислал: TALMON img
Вес: 3
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Если на лист "тетрадки в клеточку" положить квадрат со стороной 6, то он захватит какую-то фигуру из нескольких целых клеток (например, как показано на рисунке).

Квадрат на тетрадке в клеточку

Сколько может быть таких неконгруэнтных фигур?

Считаются только максимальные фигуры: если к фигуре можно добавить хотя бы одну целую клетку (быть может), используя поворот и/или сдвиг квадрата по листу, то такая фигура не максимальная. Фигура на рисунке, очевидно, не максимальная. Такие не считаем.

В «подробном» решении следует показать все фигуры, либо как-то ясно их описать (например, используя шахматную терминологию).

Задачу решили: 17
всего попыток: 62
Задача опубликована: 06.10.21 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

На шахматной доске n на n расставлены n2 ферзей n различных цветов, по n ферзей каждого цвета. Каждый ферзь стоит на отдельной клетке, и ни один ферзь не стоит ни на той же горизонтали, ни на той же вертикали, ни на той же диагонали (большой или маленькой) что другой ферзь того же цвета. На рисунке показан пример такой расстановки ферзей для n=5:

Ферзи

Найдите 4 наименьших натуральных числа n, для которых это возможно. Укажите в ответе их сумму.

Задачу решили: 8
всего попыток: 19
Задача опубликована: 11.02.22 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Из бумаги склеили правильный тетраэдр. Затем на его поверхности последовательно сделали n разрезов в форме отрезков прямых, в результате чего она распалась на m частей, которыми удалось оклеить без просветов и наложений 3 одинаковых правильных тетраэдра, не имеющих общих точек. Найдите минимально возможное значение 100m + n.

Замечание: разрезания разрешено чередовать с развёртыванием исходного тетраэдра.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.