img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: solomon добавил комментарий к решению задачи "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 236
всего попыток: 403
Задача опубликована: 04.01.10 10:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: bbny

В разных точках на шесте длиной 1 метр сидят муравьи. В какой-то момент все они одновременно начинают бежать вдоль шеста с одной и той же скоростью 1 метр в минуту (каждый бежит в одном из двух возможных направлений). Муравей, добежавший до конца шеста, спрыгивает с него на землю. А вот если два муравья сталкиваются, то каждый из них мгновенно разворачивается и бежит с той же скоростью, но в противоположном направлении. Через какое максимальное число секунд все муравьи спрыгнут с шеста? (Если Вы считаете, что движение может продолжаться до бесконечности, введите 0.)

Задачу решили: 341
всего попыток: 379
Задача опубликована: 22.03.10 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

Два велосипедиста одновременно стартовали на двух разных, но пересекающихся дорогах. Оба едут с постоянной скоростью 10 км/ч в сторону перекрёстка, где их дороги пересекаются. В момент старта один из велосипедистов находился на расстоянии 50 км от перекрёстка, а другой — на расстоянии 30 км от перекрёстка. Через сколько часов после старта оба велосипедиста будут на одинаковом расстоянии от перекрёстка?

Задачу решили: 39
всего попыток: 115
Задача опубликована: 17.08.12 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

Рассмотрим монотонно возрастающую последовательность всех натуральных чисел, которые являются суммой цифр квадрата хотя бы одного натурального числа (в десятичной системе счисления).

Чему равен миллионный член этой последовательности?

Задачу решили: 235
всего попыток: 249
Задача опубликована: 18.10.13 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: kot_vi

В одной семье (мама, папа и дети) было 7 дочерей, а у каждой из них - один брат. Сколько всего детей было в этой семье?

Задачу решили: 23
всего попыток: 74
Задача опубликована: 23.02.15 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: kvanted

Найдите наибольшее натуральное число, которое обладает таким свойством: часть числа, состоящая из первых k цифр исходного числа делится на k для всех k=1, 2, ..., n, (n = количество цифр этого числа. Число записано без ведущих нулей. Цифры могут повторяться).

Задачу решили: 23
всего попыток: 117
Задача опубликована: 09.11.16 08:00
Прислал: TALMON img
Источник: По мотивам задачи "Представляем число"
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Найдите наименьшее натуральное число, представимое в виде суммы 10-и различных натуральных слагаемых с одинаковой суммой цифр и в виде суммы 11-и различных натуральных слагаемых с одинаковой суммой цифр.

Задачу решили: 30
всего попыток: 51
Задача опубликована: 13.02.17 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100

Найдите наименьшее натуральное число n, такое, что каждый из 5-и последовательных чисел n, n+1, n+2, n+3, n+4 делится на квадрат простого числа.

Задачу решили: 43
всего попыток: 86
Задача опубликована: 10.03.17 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: volinad (Владимир Алексеевич Данилов)

Сколько есть чисел, состоящих из цифр от 1 до 9 (каждая цифра входит 1 раз), которые делятся нацело на 99?

Задачу решили: 29
всего попыток: 64
Задача опубликована: 15.03.17 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: levvol

У четырёх прямоугольников соотношения длин сторон: 1:a1, 1:a2, 1:a3, 1:a4, где a1 < a2 < a3 < a4. – натуральные числа. Углы между диагональю и большой стороной - соответственно равны α1, α2, α3, α4, при этом α1 + α2 + α3 + α4 = π/4. Сколько существует таких наборов натуральных чисел {a1, a2, a3, a4}?

Задачу решили: 41
всего попыток: 115
Задача опубликована: 13.12.17 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Vkorsukov

Найдите количество комплексных чисел a+bi (a и b - целые), для которых существует комплексное число c+di (c и d - тоже целые), таких, что произведение: (a+bi)(c+di) = 16.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.