Лента событий:
Sam777e решил задачу "Дырявый квадрат-3" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
18
всего попыток:
29
Рассмотрим комплексные числа: Рассмотрим сумму: Чему равен предел её абсолютной величины, когда n стремится к бесконечности? Округлите ответ до пяти десятичных знаков после запятой.
Задачу решили:
33
всего попыток:
50
Найдите площадь фигуры, ограниченной кривой: 13x2 + 10xy + 13y2 = 72. Ответ округлите до двух знаков после запятой.
Задачу решили:
11
всего попыток:
39
Найдите количество решений в целых числах уравнения: Симметричные решения, получаемые одно из другого перестановкой переменных, считать различными.
Задачу решили:
4
всего попыток:
5
На рисунке изображён пример полиомино - фигуры, состоящей из какого-то количества смежных клеток размером 1x1 на листе тетрадки в клеточку: На том же рисунке также изображён квадрат размером 8x8, в котором данное полиомино помещается целиком. В этом примере полиомино занимает на листе тетрадки 9 строк и 9 столбцов, а стороны большого квадрата наклонены к сторонам клеточек под углами с тангенсами -3/5 и 5/3. На рисунке также выделены вершины полиомино, лежащие на сторонах большого квадрата. Нас интересует количество различных (не конгруэнтных) полиомино, обладающих следующими двумя свойствами: Разобъём все полиомино, обладающие двумя указанными свойствами, по количествам строк и столбцов, которые они занимают на листе тетрадки. Обозначим: В ответ введите эти 5 чисел подряд, без пробелов, слева направо: n1n2n3n4n5
Задачу решили:
18
всего попыток:
36
Сколько существует квадратов, вершины которых находятся на узлах точечной сетки 100x2021? На рисунке изображён пример квадрата в точечной сетке 5x8.
Задачу решили:
22
всего попыток:
52
Известно, что для каких-то 4-х точек на плоскости существует конечное количество окружностей, от которых они равноудалены. Найдите максимальное возможное значение этого количества.
Задачу решили:
28
всего попыток:
40
Рассмотрим систему двух неравенств с целочисленными коэффициентами: Ax² + Bx + C ≤ 0 Найдите минимально возможную сумму |A| + |B| + |C| + |D| + |E| + |F|, при которой эта системы имеет действительные решения, но не имеет рационального решения?
Задачу решили:
26
всего попыток:
33
Определителем таблицы из 9-и чисел: Дано число: n = 10100 + 1. Рассмотрим всевозможные таблицы указанного выше вида, когда каждый из 9-и чисел равен либо 1, либо n. Пусть их наибольший определитель равен x. Найдите сумму цифр числа x.
Задачу решили:
13
всего попыток:
21
На левом чертеже содержится большое количество различных n-угольников для различных n. На правом чертеже показан пример одного n-угольника для n=10. Найдите максимально возможное n. Ответ необходимо обосновать: показать, что многоугольник с найденным вами количеством сторон n существует, и доказать, что это n является максимальным.
Задачу решили:
29
всего попыток:
35
На рисунке указаны длины звеньев ломаной в правильном шестиугольнике. Длина гипотенузы AC прямоугольного треугольника ABC представима в виде x + y*√3, где x и y – рациональные числа. Найдите сумму x+y.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|