img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 52
всего попыток: 284
Задача опубликована: 15.12.09 19:03
Прислал: TALMON img
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: Dremov_Victor (Виктор Дремов)

Перед двумя игроками 3 кучки спичек. В первой кучке 111 спичек, во второй — 114, а в третьей — 116 спичек. Каждый из игроков своим ходом берёт из любой (но только одной!) кучки произвольное целое число спичек от 1 до 11 включительно. Ходы делаются по очереди, а выигрывает тот, кто возьмёт последнюю спичку со стола. Сколько спичек и из какой кучки должен взять первый игрок в начале игры, чтобы обеспечить себе победу при любых ходах второго игрока? В ответе напишите подряд, без пробелов, номер кучки и количество спичек.

Задачу решили: 105
всего попыток: 227
Задача опубликована: 30.08.10 08:00
Прислал: TALMON img
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg

Жили были три поросёнка. Один из них всегда говорит правду, другой всегда врёт, а третий — дипломат: может и правду сказать, и соврать. Но неизвестно, кто есть кто. Они же, как водится в таких задачах, всё знают друг про друга. Какое наименьшее число вопросов типа "да–нет" нужно задать, чтобы наверняка узнать, кто есть кто? Каждый вопрос можно задавать любому (но только одному!) поросёнку.

Задачу решили: 175
всего попыток: 314
Задача опубликована: 08.10.10 10:30
Прислал: TALMON img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: ilkash (Илья Денисов)

Есть весы, показывающие точный вес, и 6 одинаковых на вид монет, одна из которых фальшивая: её вес отличается от веса настоящей монеты (веса настоящих монет одинаковы). За какое наименьшее число взвешиваний можно наверняка определить вес настоящей монеты и вес фальшивой?

Задачу решили: 50
всего попыток: 176
Задача опубликована: 22.12.10 08:00
Прислал: TALMON img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg

В трёх стаканах находится a, b и c мл воды, где 0<a<b<c≤200. Разрешена такая операция: количество воды в любом стакане можно удвоить, переливая из любого другого стакана, в котором для этого достаточно воды. Цель: посредством таких операций полностью опорожнить какой-нибудь стакан. Найдите число троек целых чисел a, b, c, для которых цель не может быть достигнута.

Задачу решили: 44
всего попыток: 158
Задача опубликована: 30.01.12 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Рассмотрим на плоскости все такие треугольники, что координаты двух их вершин задаются целыми положительными числами не больше 10, а третья их вершина - начало координат (0,0). Сколько из них имеют целочисленную площадь?

Задачу решили: 24
всего попыток: 69
Задача опубликована: 31.05.13 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Sam777e

Доска 16х16 разделена на квадраты со стороной длины 1. Сколько сушествует троек различных узлов доски, через которые проходит парабола?

Задачу решили: 36
всего попыток: 65
Задача опубликована: 17.10.16 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: логикаimg
Лучшее решение: georgp

Внутри некоторого выпуклого 13-угольника нет ни одной точки, через которой проходят 3 (или больше) его диагоналей. Сколько всего точек пересечения диагоналей есть внутри этого многоугольника?

Задачу решили: 97
всего попыток: 109
Задача опубликована: 22.01.18 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Темы: логикаimg
Лучшее решение: solomon

В соревновании участвовало 20 спортсменов. Каждому из них было предложено заранее угадать, какое место он займёт. Петя сказал, что он займёт последнее место. 19 спортсменов заняли места похуже, чем они предполагали. Какое место занял Петя?

Задачу решили: 24
всего попыток: 78
Задача опубликована: 18.05.20 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

Найдите в порядке возрастания 2020-е число среди всех натуральных чисел, сумма цифр которых равна 2020.

Задачу решили: 11
всего попыток: 39
Задача опубликована: 27.01.21 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Найдите количество решений в целых числах уравнения:
x/(y + z) + y/(z + x) + z/(x + y) = 4
в пределах: 0 ≤ x + y + z ≤ 6000.

Симметричные решения, получаемые одно из другого перестановкой переменных, считать различными.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.