Лента событий:
DOMASH предложил задачу "Дырявый квадрат-4" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
48
всего попыток:
98
Хозяин тира предложил Пете награду 3 пули за попадание в цель и штраф 2 пули за промах, а Васе - награду 2 пули за попадание в цель и штраф 3 пули за промах. Обоим было выдано по 10 пуль и оба произвели по 55 выстрелов пока не закончились все пули. Найти отношение количества попаданий в цель Пети к количеству попаданий Васи.
Задачу решили:
17
всего попыток:
41
На сторонах АВ и ВС треугольника АВС взяты соответственно 2 точки D и Е так, что AD=CE. Отрезки АЕ и СD пересекаются в точке F. В треугольниках ADF и CFE вписаны 2 окружности с центрами О1 и О2. Биссектриса угла АВС пересекает отрезок О1О2 в точке М. Известно, что |О1О2|=9, |МF|=2. Найти соотношении, которое нужно найти |O1M|/|MO2|.
Задачу решили:
35
всего попыток:
44
В треугольнике АВС со сторонами |АВ|=20, |ВС|=16, |СА|=24 проведена прямая,параллельная стороне ВС, которая пересекает сторону АВ в точке М, а с сторону СА в точке Р. Найти длину отрезка МР при наименьшем радиусе описанной окружности около треугольника ВМР.
Задачу решили:
31
всего попыток:
39
На внешней биссектрисе угла АВС отмечена точка D так, что она оказалась внутри угла ВАС и угол ВСD=60°. Середина отрезка BD отмечена точкой М. Найдите угол АМС в градусах, если известно, что |CD|=2|AB|, угол АВС=100°.
Задачу решили:
44
всего попыток:
56
Прямоугольный треугольник с катетами 21 и 28 разделен биссекрисой прямого угла на два треугольника. Найти расстояние между точками пересечения высот этих треугольников.
Задачу решили:
42
всего попыток:
52
В прямоугольном треугольнике АВС (угол С-прямой) проведены медиана АА1 и высота СС1. Точка пересечения их - M. Найти угол А в градусах, если |МС1|:|МС|=3:4.
Задачу решили:
48
всего попыток:
54
Диагонали трапеции равны 3 и 5, а отрезок, соединяющий середины оснований равен 2. Найти площадь трапеции.
Задачу решили:
34
всего попыток:
48
Внутри окружности проведены три хорды зигзагом АВ, ВС, CD. Равные по длине хорды AB и CD при продолжении в направлении В и D пересекаются в точке Е. Прямая ЕО (О - центр окружности) пересекает хорду ВС в точке F так,что |BF|:|FC|=4/9. Найти отношение |ЕВ|/|ВА|.
Задачу решили:
33
всего попыток:
55
В прямоугольном треугольнике АВС (угол С - прямой) на гипотенузе отмечена точка К так,что отрезок СК делит биссектрису BD пополам. В треугольнике АСК все углы имеют целочисленные значения в градусах, два из которых являются нечетными числами и относятся друг другу в отношении 1:3. Найти значение угла ВАС в градусах.
Задачу решили:
48
всего попыток:
57
В египетском треугольнике 3, 4, 5 из прямого угла высота делит его на два треугольника. Найти отношение периметра основного треугольника к сумме радиусов окружностей, вписанных во все три треугольника.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|