Лента событий:
vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
174
всего попыток:
469
Марина оказалась на Острове Рыцарей и Лжецов (рыцари всегда говорят правду, лжецы всегда лгут). Марина знает язык островитян, вот только не помнит, какое из двух слов "кыр" и "мыр" значит "да", а какое — "нет". Перед Мариной два мешка. В одном — золото, в другом — медь. Рядом сидит островитянин (неизвестно, рыцарь или лжец). Какое наименьшее число вопросов Марина должна ему задать, чтобы узнать, в каком из мешков находится золото?
Задачу решили:
104
всего попыток:
188
В ряд слева направо были выставлены гирьки массами 1 г, 2 г, …, 13 г. Из них осталось только семь подряд стоящих, а остальные шесть гирек потеряны. За какое наименьшее число взвешиваний на чашечных весах можно определить массы оставшихся гирек?
Задачу решили:
96
всего попыток:
418
За круглым столом сидят 30 человек. Некоторые из них всегда говорят правду, а остальные всегда лгут. У каждого спросили: «Есть ли среди ваших соседей лжец?», и каждый ответил: «Да». Сколько лжецов могло быть за столом? В ответе напишите сумму всех возможных значений количества лжецов.
Задачу решили:
86
всего попыток:
183
На острове находится военная база. Каждый из солдат, служащих на этой базе, однажды сделал два заявления: 1) на базе нет и ста солдат, которые стреляют лучше меня; 2) по крайней мере тысяча солдат на базе владеют приёмами рукопашного боя лучше, чем я. Известно, что каждый из солдат либо всегда говорит правду, либо всегда лжёт. Кроме того, меткость стрельбы у всех солдат разная, как и уровень владения рукопашным боем. Сколько солдат служат на базе?
Задачу решили:
63
всего попыток:
143
Два игрока записывают 2n-значное натуральное число, используя лишь цифры 1, 2, 3, 4, 5. Первую цифру пишет первый игрок, вторую — второй, третью — опять первый, и так далее. Задача второго игрока добиться, чтобы число, полученное по окончании игры, делилось на 9. Задача первого — помешать второму. При каких n выигрывает первый, а при каких — второй? В ответе укажите количество значений n от 1 до 10 (включительно), при которых выигрывает первый.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|