img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Sam777e решил задачу "Дырявый квадрат-3" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 72
всего попыток: 130
Задача опубликована: 04.12.10 08:00
Прислала: Marishka24 img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: bbny

Угол между часовой и минутной стрелками — один градус. Секундная стрелка — ровно на 12. Который час? В ответе введите без пробела часы (от 0 до 11) и минуты (от 00 до 59). Если задача имеет более одного решения, введите их в порядке возрастания. (Например, если ответ "0:15 и 11:01", введите 0151101; а вместо 14:25 введите 2:25.)

Задачу решили: 122
всего попыток: 257
Задача опубликована: 06.12.10 08:00
Прислала: Marishka24 img
Источник: Всероссийская олимпиада
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: алгоритмыimg

В ряду 10 монет. Сначала подряд лежат несколько (от 1 до 9) настоящих, которые весят по 10 граммов, а все следующие за ними — фальшивые, весящие по 9 граммов. За какое минимальное число взвешиваний на чашечных весах без гирь можно определить, какие монеты — настоящие, а какие — фальшивые?

Задачу решили: 63
всего попыток: 143
Задача опубликована: 06.12.10 12:00
Прислала: Marishka24 img
Источник: Азиатско-Тихоокеанская олимпиада
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100

Найдите максимально возможное число членов последовательности, состоящей из таких ненулевых целых чисел, что сумма любых семи из них, идущих подряд, — положительна, а любых одиннадцати, идущих подряд, – отрицательна.

Задачу решили: 77
всего попыток: 112
Задача опубликована: 10.12.10 08:00
Прислала: Marishka24 img
Источник: Турнир городов
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: putout (Дмитрий Лебедев)

Каспениада (в дальнейшим для краткости именуемая Касей) задумала натуральное число и по секрету сообщила его Аппроксидону (Прокси). Йегиртон (Гиря) тоже задумал натуральное число и тоже по секрету сообщил его Прокси. Прокси вычислил сумму и произведение этих двух чисел, и один из результатов сообщил Касе и Гире. Результат был 2010. Узнав результат, Гиря сказал, что не знает, какое число задумала Кася. Услышав это, Кася сказала, что не знает, какое число задумал Гиря. Какое число задумала Кася?

Задачу решили: 136
всего попыток: 185
Задача опубликована: 12.12.10 08:00
Прислала: Marishka24 img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

Семь шахматистов сыграли турнир в один круг. (За победу начислялось 1 очко, за ничью — 1/2, за поражение — 0.) Победитель набрал в два раза больше очков, чем в сумме шахматисты, занявшие три последних места. Петя занял 4-е место, набрав три очка. Как он сыграл с занявшим 3-е место (1 — выиграл, 0 — проиграл, 1/2 — сыграл вничью)? 

Задачу решили: 102
всего попыток: 128
Задача опубликована: 13.12.10 08:00
Прислала: Marishka24 img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: casper

Пусть аn=n2+n+1 и bn=an·an+1 (n=1,2,3...). Сколько членов последовательности {bn} НЕ  являются членами последовательности {an}?

Задачу решили: 93
всего попыток: 262
Задача опубликована: 17.12.10 08:00
Прислала: Marishka24 img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Xenia1996 (Ксения Шейнерман)

Мне надоели обычные игральные кубики, и я решила сделать свой. От обычного кубика мой отличается только тем, что на любых двух соседних гранях количество точек различается как минимум на 2. Какое наименьшее число точек мне понадобится? (Не забудьте о том, что на различных гранях должно быть различное количество точек, и не менее одной точки на каждой грани!)

Задачу решили: 126
всего попыток: 159
Задача опубликована: 20.12.10 12:00
Прислала: Marishka24 img
Источник: Всеукраинская олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: casper

Пусть n — натуральное число, а S(n) — сумма цифр числа n. Сколько решений имеет уравнение n+S2(n)=2011?

Задачу решили: 105
всего попыток: 187
Задача опубликована: 30.12.10 16:19
Прислала: Marishka24 img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: kryusvy (Святослав Крюков)

Если от натурального числа отнять квадрат суммы его цифр, какое наименьшее число может получиться?

Задачу решили: 87
всего попыток: 127
Задача опубликована: 04.01.11 08:00
Прислала: Marishka24 img
Источник: Австрийская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: zmerch

В последовательности {a0, a1, a2,...} a3=91 и при n≥0 an+1=10an+(–1)n. Сколько элементов этой последовательности являются квадратами целых чисел?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.