Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
100
всего попыток:
389
Сколько решений в натуральных числах имеет уравнение 1/x+1/y=1/2010?
Задачу решили:
146
всего попыток:
229
Трое братьев вскапывали огород. После работы их встретил отец.
Задачу решили:
90
всего попыток:
436
На территории завода четыре асфальтовые дорожки длиной 10 м каждая образуют квадрат. В двух соседних вершинах квадрата стоят двое рабочих, держа на плечах десятиметровую трубу. Им необходимо, передвигаясь по дорожкам и не выпуская при этом трубы, поменяться местами. Из соображений безопасности разрешается идти со скоростью не больше 1 м/с. Внутри квадрата нет никаких сооружений, создающих помехи при переноске трубы. За какое наименьшее время рабочие могут справиться с заданием? (Ответ округлите до ближайшего целого числа.)
Задачу решили:
74
всего попыток:
108
Мы с подружками поехали на сбор хлопка на 33 дня. Мы имеем право ровно на 6 выходных из этих 33 дней. Сколькими способами можно составить расписание выходных и рабочих дней таким образом, чтобы на каждые 12 подряд идущих дней приходилось не менее трёх выходных?
Задачу решили:
126
всего попыток:
268
Сколько существует таких целых чисел a, что уравнение x2+ax+2010=0 имеет целый корень?
Задачу решили:
118
всего попыток:
300
На какое наименьшее количество частей нужно разрезать прямоугольник 25×36, чтобы из них можно было сложить квадрат? (Нужно использовать все части без наложений и пустот.)
Задачу решили:
96
всего попыток:
418
За круглым столом сидят 30 человек. Некоторые из них всегда говорят правду, а остальные всегда лгут. У каждого спросили: «Есть ли среди ваших соседей лжец?», и каждый ответил: «Да». Сколько лжецов могло быть за столом? В ответе напишите сумму всех возможных значений количества лжецов.
Задачу решили:
65
всего попыток:
99
Сколько существует различных троек простых чисел таких, что произведение любых двух из них при делении на третье даёт в остатке 1? (Тройки, полученные друг из друга перестановками, считаются одинаковыми.)
Задачу решили:
145
всего попыток:
168
На гипотенузе AB прямоугольного треугольника ABC взяты две точки M и N так, что AC=AM, BC=BN. Сколько градусов составляет величина угла MCN?
Задачу решили:
66
всего попыток:
434
Участников математической олимпиады пересчитали и спросили, кто поедет в воскресенье на экскурсию. Каждый участник сделал следующее заявление: "Я поеду, если всего поедет не менее n2/N и не более n участников олимпиады, где n — мой номер, а N — общее число участников олимпиады". Какое наибольшее число участников смогут поехать на экскурсию, если N=125?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|