Лента событий:
Sam777e решил задачу "Дырявый квадрат-3" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
99
всего попыток:
123
Сколько решений в целых числах имеет уравнение x2+y2=q+1, где q равно произведению первых 2010 простых чисел?
Задачу решили:
100
всего попыток:
168
Отрезок шоссе между пунктами А1 и А11 имеет протяженность, равную 56 километрам. Вдоль этого шоссе расположены ещё 9 пунктов: А2, А3, ..., А10 (именно в таком порядке). Любые два соседних участка шоссе (вместе взятых) не длиннее 12 километров. А любые три — не короче 17. Сколько километров составляет расстояние от А2 до А7?
Задачу решили:
137
всего попыток:
169
Встретились три гномика. У каждого на майке написано двузначное натуральное число. Каждый из гномиков заметил, что если в его числе поменять местами цифры, то получится сумма чисел у двух других гномиков. Чему равна сумма чисел у всех трёх гномиков?
Задачу решили:
118
всего попыток:
243
Какое минимальное число звёздочек можно так расставить в клетках таблицы 4×4, чтобы после вычёркивания любых двух строк и любых двух столбцов этой таблицы в оставшихся клетках всегда оставалась хотя бы одна звездочка?
Задачу решили:
91
всего попыток:
221
В цепи 150 звеньев, каждое массой 1 г. Какое наименьшее число звеньев нужно расковать, чтобы из образовавшихся частей (с учётом раскованных звеньев) можно было составить все целочисленные массы от 1 до 150 г? (Масса раскованного звена тоже равна одному грамму.)
Задачу решили:
91
всего попыток:
125
В чемпионате мира по тыквондо 18 спортсменов состязались в разбивании тыквы одним ударом на максимальное число частей. Все участники показали различные результаты, причём у чемпиона получилось втрое больше частей, чем у занявшего 10-е место, но меньше, чем у занявших 9-е и 10-е места, вместе взятых. Какого результата добился чемпион, если общее количество частей у всех участников оказалось меньше 270? Примечание: неразбитая тыква считается одной частью!
Задачу решили:
52
всего попыток:
503
В однокруговом волейбольном турнире (без ничьих) участвовало 23 команды. Три команды А, В, С образуют циклическую тройку, если А выиграла у В, В — у С, а С — у А. Каково наибольшее возможное количество циклических троек?
Задачу решили:
80
всего попыток:
201
Какое наибольшее количество королей можно расставить на шахматной доске так, чтобы ровно половина из них не угрожала никому из остальных?
Задачу решили:
84
всего попыток:
133
Найдите геометрическую прогрессию максимальной длины, все члены которой — различные целые числа из промежутка от 100 до 1000 включительно. В ответе укажите наибольший член этой прогрессии.
Задачу решили:
65
всего попыток:
128
Прямоугольник ABCD имеет стороны AB=11 и BC=5. Для треугольника EFG точка A — точка пересечения высот, B – центр описанной окружности, C — середина FG, D — основание высоты, проведенной из вершины E. Найдите FG.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|