img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Sam777e решил задачу "Дырявый квадрат-3" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 99
всего попыток: 123
Задача опубликована: 16.07.10 08:00
Прислала: Marishka24 img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: min

Сколько решений в целых числах имеет уравнение x2+y2=q+1, где q равно произведению первых 2010 простых чисел?

Задачу решили: 100
всего попыток: 168
Задача опубликована: 18.08.10 00:00
Прислала: Marishka24 img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

Отрезок шоссе между пунктами А1 и А11 имеет протяженность, равную 56 километрам. Вдоль этого шоссе расположены ещё 9 пунктов: А2, А3, ..., А10 (именно в таком порядке). Любые два соседних участка шоссе (вместе взятых) не длиннее 12 километров. А любые три — не короче 17. Сколько километров составляет расстояние от А2 до А7?

Задачу решили: 137
всего попыток: 169
Задача опубликована: 01.09.10 08:00
Прислала: Marishka24 img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

Встретились три гномика. У каждого на майке написано двузначное натуральное число. Каждый из гномиков заметил, что если в его числе поменять местами цифры, то получится сумма чисел у двух других гномиков. Чему равна сумма чисел у всех трёх гномиков?

Задачу решили: 91
всего попыток: 221
Задача опубликована: 29.10.10 08:00
Прислала: Marishka24 img
Источник: Московские математические бои
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

В цепи 150 звеньев, каждое массой 1 г. Какое наименьшее число звеньев нужно расковать, чтобы из образовавшихся частей (с учётом раскованных звеньев) можно было составить все целочисленные массы от 1 до 150 г? (Масса раскованного звена тоже равна одному грамму.)

Задачу решили: 91
всего попыток: 125
Задача опубликована: 09.11.10 08:00
Прислала: Marishka24 img
Источник: Турнир памяти А.П.Савина
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: casper

В чемпионате мира по тыквондо 18 спортсменов состязались в разбивании тыквы одним ударом на максимальное число частей. Все участники показали различные результаты, причём у чемпиона получилось втрое больше частей, чем у занявшего 10-е место, но меньше, чем у занявших 9-е и 10-е места, вместе взятых. Какого результата добился чемпион, если общее количество частей у всех участников оказалось меньше 270? Примечание: неразбитая тыква считается одной частью!

Задачу решили: 52
всего попыток: 503
Задача опубликована: 11.11.10 08:00
Прислала: Marishka24 img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

В однокруговом волейбольном турнире (без ничьих) участвовало 23 команды. Три команды А, В, С образуют циклическую тройку, если А выиграла у В, В — у С, а С — у А. Каково наибольшее возможное количество циклических троек?

Задачу решили: 80
всего попыток: 201
Задача опубликована: 14.11.10 08:00
Прислала: Marishka24 img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: gpariska (Галина Парижская)

Какое наибольшее количество королей можно расставить на шахматной доске так, чтобы ровно половина из них не угрожала никому из остальных?

Задачу решили: 84
всего попыток: 133
Задача опубликована: 22.11.10 12:00
Прислала: Marishka24 img
Источник: Канадская математическая олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: levvol

Найдите геометрическую прогрессию максимальной длины, все члены которой — различные целые числа из промежутка от 100 до 1000 включительно. В ответе укажите наибольший член этой прогрессии.

Задачу решили: 65
всего попыток: 128
Задача опубликована: 26.11.10 12:00
Прислала: Marishka24 img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Прямоугольник ABCD имеет стороны AB=11 и BC=5. Для треугольника EFG точка A — точка пересечения высот, B – центр описанной окружности, C — середина FG, D — основание высоты, проведенной из вершины E. Найдите FG.

Задачу решили: 51
всего попыток: 180
Задача опубликована: 03.12.10 12:00
Прислала: Marishka24 img
Источник: Азиатско-Тихоокеанская олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

Найдите такое наименьшее n, что не существует арифметической прогрессии из 1999 вещественных чисел, ровно n членов которой — целые.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.