Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
159
всего попыток:
279
Сколько существует трёхзначных чисел n таких, что число n2+8n–1 делится на 239?
Задачу решили:
110
всего попыток:
160
Сколькими способами можно расставить в ряд все десять цифр от 0 до 9 включительно так, чтобы сумма любых трёх из них, идущих подряд, не превышала 12?
Задачу решили:
145
всего попыток:
232
Какое наибольшее количество квадратов натуральных чисел можно написать, чтобы все написанные цифры были разными?
Задачу решили:
91
всего попыток:
125
В чемпионате мира по тыквондо 18 спортсменов состязались в разбивании тыквы одним ударом на максимальное число частей. Все участники показали различные результаты, причём у чемпиона получилось втрое больше частей, чем у занявшего 10-е место, но меньше, чем у занявших 9-е и 10-е места, вместе взятых. Какого результата добился чемпион, если общее количество частей у всех участников оказалось меньше 270? Примечание: неразбитая тыква считается одной частью!
Задачу решили:
171
всего попыток:
282
От трёхзначного числа отняли сумму кубов его цифр. Какой наибольший результат мог при этом получиться?
Задачу решили:
269
всего попыток:
301
К простому числу p прибавили 400 и получили квадрат натурального числа. Найдите p.
Задачу решили:
199
всего попыток:
325
Маша и Саша лакомятся изюмом. Маша съедает одну изюминку, Саша — 2, Маша — 3, Саша — 4 и т.д. (Следующий берёт на одну изюминку больше.) Сколько всего было изюминок, если Маша съела ровно 200?
Задачу решили:
101
всего попыток:
249
Чтобы отправить по почте письмо, используя только 8 и 15-центовые марки, обязательно придётся переплатить. Какое наибольшее число центов может составлять цена отправки этого письма без переплаты?
(Канадская математическая олимпиада)
Задачу решили:
113
всего попыток:
135
Найдите наименьшее количество натуральных чисел, сумма квадратов которых равна 1995.
Задачу решили:
235
всего попыток:
280
Найдите самое маленькое натуральное число, имеющее сумму цифр 17, оканчивающееся на 17 и кратное 17.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|