Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
74
всего попыток:
108
Мы с подружками поехали на сбор хлопка на 33 дня. Мы имеем право ровно на 6 выходных из этих 33 дней. Сколькими способами можно составить расписание выходных и рабочих дней таким образом, чтобы на каждые 12 подряд идущих дней приходилось не менее трёх выходных?
Задачу решили:
104
всего попыток:
188
В ряд слева направо были выставлены гирьки массами 1 г, 2 г, …, 13 г. Из них осталось только семь подряд стоящих, а остальные шесть гирек потеряны. За какое наименьшее число взвешиваний на чашечных весах можно определить массы оставшихся гирек?
Задачу решили:
115
всего попыток:
210
Вася записал в тетрадке числа 1, 2, 3, ..., 11. Вася и Петя по очереди (начинает Вася) стирают по три любых числа до тех пор, пока не останется два числа. Вася выигрывает у Пети количество монеток, равное разности этих двух чисел. Какой максимальный выигрыш может обеспечить себе Вася при правильной стратегии обоих игроков?
Задачу решили:
118
всего попыток:
243
Какое минимальное число звёздочек можно так расставить в клетках таблицы 4×4, чтобы после вычёркивания любых двух строк и любых двух столбцов этой таблицы в оставшихся клетках всегда оставалась хотя бы одна звездочка?
Задачу решили:
91
всего попыток:
221
В цепи 150 звеньев, каждое массой 1 г. Какое наименьшее число звеньев нужно расковать, чтобы из образовавшихся частей (с учётом раскованных звеньев) можно было составить все целочисленные массы от 1 до 150 г? (Масса раскованного звена тоже равна одному грамму.)
Задачу решили:
96
всего попыток:
418
За круглым столом сидят 30 человек. Некоторые из них всегда говорят правду, а остальные всегда лгут. У каждого спросили: «Есть ли среди ваших соседей лжец?», и каждый ответил: «Да». Сколько лжецов могло быть за столом? В ответе напишите сумму всех возможных значений количества лжецов.
Задачу решили:
110
всего попыток:
160
Сколькими способами можно расставить в ряд все десять цифр от 0 до 9 включительно так, чтобы сумма любых трёх из них, идущих подряд, не превышала 12?
Задачу решили:
52
всего попыток:
503
В однокруговом волейбольном турнире (без ничьих) участвовало 23 команды. Три команды А, В, С образуют циклическую тройку, если А выиграла у В, В — у С, а С — у А. Каково наибольшее возможное количество циклических троек?
Задачу решили:
269
всего попыток:
525
У нас 4 монеты. Две из них — по 15 грамм, две другие — по 16. Ещё есть чашечные весы со стрелкой, показывающие разность масс грузов, положенных на чашки. За какое наименьшее число взвешиваний можно гарантированно найти хотя бы одну монету в 16 грамм?
Задачу решили:
60
всего попыток:
97
Конь может сделать N ходов (N≥2) и вернуться в исходную клетку, побывав при этом на всех горизонталях и вертикалях шахматной доски N×N. Найдите сумму всех возможных значений N.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|