Лента событий:
vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
26
всего попыток:
67
Назовем непустое подмножество A ⊂ Ζ целых чисел набором типа N, если: Сколько существует различных наборов типа 18?
Задачу решили:
43
всего попыток:
77
Найти две последние ненулевые цифры числа 2017!.
Задачу решили:
30
всего попыток:
45
Следующие выражения с натуральными числами Найдите все такие комбинации для n=5 и введите сумму всех входящих в них чисел (с учетом повторений).
Задачу решили:
46
всего попыток:
72
Марья Ивановна написала число на доске и попросила учеников назвать его делители. Первый ученик сказал, что число делится на 2. Марья Ивановна сказала, что почти все правы, кроме двух соседей по парте - Вовочки и его приятеля, которые произнесли свои фразу последовательно, первым сказал Вовочка. Каким по порядку произнес свою фразу Вовочка?
Задачу решили:
52
всего попыток:
66
Легко вычислить 03+13+23=32, 13+23+33=62. Найдите следующие три последовательные натуральные числа, которые обладают таким же свойством. В ответе укажите первое из них.
Задачу решили:
39
всего попыток:
60
Найти наименьшее число N такое, что 1+22018+32018+...+N2018 - делится на 2018.
Задачу решили:
17
всего попыток:
45
В ряду стоят несколько книг с разным количеством страниц. Каждая книга состоит из одной или нескольких глав и сшита из 12 одинаковых тетрадей, каждая тетрадь - из нескольких двойных листов, вложенных друг в друга. Если в главе более одной тетради, то все они вложены друг в друга. Первой из вложенных друг в друга тетрадей считается та, в которую вложены все остальные и т.д. Все страницы каждой книги пронумерованы, начиная с 1. Сумма номеров четырех страниц одного из двойных листов четвертой тетради каждой книги равна 338. Найдите максимально возможное общее колличество страниц во всех книгах ряда.
Задачу решили:
42
всего попыток:
68
Имеется 11 монет с различными целыми весами. Сумарный вес любых семи монет больше суммарного веса оставшихся четырех. Найдите наименьший возможный суммарный вес всех монет.
Задачу решили:
28
всего попыток:
33
Найдите натуральное число n, которое имеет ровно 12 делителей 1=m1 < m2 < ... < m12=n, при этом делитель с номером равным m4-1 равен (m1+m2+m4)*m8.
Задачу решили:
38
всего попыток:
49
Пусть D(n) - количество делителей натурального числа n. Найдите сумму первых шести n таких, что D(n) + D(n+1) = 7.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|