img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 37
всего попыток: 58
Задача опубликована: 21.01.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Vkorsukov

Пусть Pn(x)=(x-1)(x-2)...(x-n), n=1, 2, 3, ..., 2015. Каждый Pn(x) запишем как многочлен от (x-2016) и рассмотрим свободные члены Qn. Например, P1(x)=(x-2016)+2015. Найти (Q1+Q2+...+Q2015)/2015!, ответ округлите до ближайшего целого.

Задачу решили: 41
всего попыток: 63
Задача опубликована: 17.04.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg
Лучшее решение: kvanted

Пусть A - матрица 16x16 с элементами aij=НОД(i,j) для 1≤i,j≤16. Найдите ее определитель.

Задачу решили: 40
всего попыток: 54
Задача опубликована: 29.04.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg

Пусть Q(x)=x3+6. Определим последовательность полиномов Pn(x):

P1(x)=Q(x), Pn+1(x)=Q(Pn(x)), n=1,2,...

Найти сумму всех действительных решений уравнения P2014(x)=x.

Задачу решили: 52
всего попыток: 89
Задача опубликована: 05.10.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Oleg2013

Известно, что x^2+xy+y^2=0. Найти (\frac{x}{x+y})^{2001}+(\frac{y}{x+y})^{2001}.

Задачу решили: 62
всего попыток: 67
Задача опубликована: 18.11.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Sam777e

Найти сумму всех натуральных чисел n таких, что сумма цифр числа 5n равна 2n.

Задачу решили: 53
всего попыток: 116
Задача опубликована: 05.02.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg

Дана функция f(x) = |4 − 4|x||− 2. Сколько решений имеет уравнение f(f(x)) = x?

+ 1
+ЗАДАЧА 1391. Гонки (М. Мурашкин)
  
Задачу решили: 33
всего попыток: 56
Задача опубликована: 18.07.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100
Темы: логикаimg
Лучшее решение: TALMON (Тальмон Сильвер)

В гоночном турнире 12 этапов и n участников. После каждого этапа все участники в зависимости от занятого места k получают баллы ak (числа ak натуральны и a1 > a2 > . . . > an). При каком наименьшем n устроитель турнира может выбрать числа a1, . . . , an так, что после предпоследнего этапа при любом возможном распределении мест хотя бы двое участников имели шансы занять первое место.

Задачу решили: 29
всего попыток: 36
Задача опубликована: 07.09.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100

Определим расстояние между числами a1a2a3a4a5 и b1b2b3b4b5  максимальное i, для которого ai ≠ bi. Найти минимально возможную сумму расстояний между всеми соседними пятизначными числами, расположенными, расположенными в некотором порядке.

+ 3
  
Задачу решили: 24
всего попыток: 42
Задача опубликована: 14.11.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Имеется 100 предметов, которые вместе весят 1000 грамм. Число m будем называть средним, если можно отобрать m предметов, которые весят 500 грамм. Какое максимальное количество средних чисел возможно?

Задачу решили: 43
всего попыток: 60
Задача опубликована: 25.11.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg

Внутри параболы y=x2 расположены несовпадающие окружности O1, O2, O3, . . . так, что при каждом n > 1 окружность On касается ветвей параболы и внешним образом окружности On−1.

Парабола и коружности

Найдите диаметр окружности O2016, если известно, что диаметр O1 равен 1 и она касается параболы в ее вершине.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.