Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
23
всего попыток:
107
Три точки выбираются случайным образом из внутренней части единичного круга. Найдите вероятность того, что окружность, проходящая через эти три точки лежит целиком внутри единичной окружности.
Задачу решили:
71
всего попыток:
74
Пость m и n - натуральные числа такие, что m2-n!=2016. Найти максимум m+n.
Задачу решили:
39
всего попыток:
64
Пусть a > b > c - целые длины сторон треугольника такие, что
Задачу решили:
43
всего попыток:
69
Найти сумму всех целых чисел n таких, что
Задачу решили:
44
всего попыток:
128
Найдите количество различных пар натуральных чисел m и n таких, что 1/m + 1/n = 1/100000.
Задачу решили:
47
всего попыток:
69
Для пяти натуральных чисел n1,>n2>n3>n4>n5 таких, что Найти сумму всех ni всех возможных решений.
Задачу решили:
131
всего попыток:
226
Сколько цифр 2 встречается в записи номеров страниц книги, содержащей 250 страниц?
Задачу решили:
65
всего попыток:
94
Найти две последние цифры значения выражения 21-22+23-24+25-26+...+22013.
Задачу решили:
37
всего попыток:
74
Известно, что a1 < a2 < ... < a2014 простые числа и a12+a22+...+a20142 делится на 2015. Найти минимально возможное a1.
Задачу решили:
37
всего попыток:
58
Пусть Pn(x)=(x-1)(x-2)...(x-n), n=1, 2, 3, ..., 2015. Каждый Pn(x) запишем как многочлен от (x-2016) и рассмотрим свободные члены Qn. Например, P1(x)=(x-2016)+2015. Найти (Q1+Q2+...+Q2015)/2015!, ответ округлите до ближайшего целого.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|