Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
70
всего попыток:
83
Найдите сумму всех простых чисел, которые являются одновременно суммой двух простых чисел и разностью двух простых чисел.
Задачу решили:
40
всего попыток:
155
В стране 1993 города, и из каждого выходит не менее 93 дорог. Известно, что из любого города можно проехать по дорогам в любой другой. Дорога соединяет между собой два города. За какое минимальное количество пересадок можно гарантированно добраться из одного города в любой другой?
Задачу решили:
47
всего попыток:
71
На совместной конференции партий лжецов и правдолюбов в президиум было избрано 32 человека, которых рассадили в четыре ряда по 8 человек. В перерыве каждый член президиума заявил, что среди его соседей есть представители обеих партий. Известно, что лжецы всегда лгут, а правдолюбы всегда говорят правду. При каком наименьшем числе лжецов в президиуме возможна описанная ситуация? (Два члена президиума являются соседями, если один из них сидит слева, справа, спереди или сзади от другого).
Задачу решили:
43
всего попыток:
51
Найдите максимальную сумму всех простых чисел p, q, r и s таких, что их сумма — простое число. А числа p2 + qs и p2 + qr — квадраты натуральных чисел. (Числа p, q, r и s предполагаются различными.)
Задачу решили:
55
всего попыток:
60
Найдите сумму всех простых p таких, что число p2 + 11 имеет ровно 6 различных делителей (включая единицу и само число).
Задачу решили:
53
всего попыток:
76
Пусть P(n) - это произведение всех ненулевых цифр натурального числа n. Найдите P(1)+P(2)+...+P(1000).
Задачу решили:
45
всего попыток:
63
Назовем билет с номером от 000000 до 999999 отличным, если разность некоторых двух соседних цифр его номера равна 5. Найдите число отличных билетов.
Задачу решили:
34
всего попыток:
38
Дан набор, состоящий из 2015 чисел таких, что если каждое число в наборе заменить на сумму остальных, то получится тот же набор. Найдите произведение чисел в наборе.
Задачу решили:
44
всего попыток:
45
Найдите все такие пары простых чисел p и q, что p3−q5 = (p+q)2. В ответе укажите сумму произведений пар таких чисел.
Задачу решили:
45
всего попыток:
58
В городе для ограничения транспортного потока для каждой частной автомашины устанавливаются два дня недели, в которые она не может выезжать на улицы города. Большой семье требуется каждый день иметь в распоряжении не менее 10 машин. Каким наименьшим количеством машин может обойтись семья, если ее члены могут сами выбирать запрещенные дни для своих автомобилей?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|