Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
44
всего попыток:
80
Сумма нескольких простых чисел равна их произведению. Найти максимально возможное количество таких чисел.
Задачу решили:
39
всего попыток:
56
Число 2100010006 обладает таким свойством: первая цифра равна количеству единиц в числе, вторая - двоек, и так далее, последняя - нулей. Найдите максимальное девятизначное число с "обратным" свойством, т.е. такое, в котором первая цифра соотвествует количеству "не единиц", вторая - "не двоек" и т.д., последняя - "не девяток".
Задачу решили:
50
всего попыток:
77
Найти сумму всех натуральных чисел N, что каждое такое число делится на все натуральные числа не превосходящие N1/2.
Задачу решили:
37
всего попыток:
39
Найти максимальное n такое, что при некотором натуральном k>1 существуют взаимно простые числа a и b для которых верно равенство: ak+bk=3n.
Задачу решили:
38
всего попыток:
42
Имеется три стопки монет. За один ход можно из одной стопки переложить одну монету в другую. За ход Вовочка зарабатывает количество монет, равное разнице числа монет в стопке, из которой берется монета и числа монет в которую перекладывается. Если разница отрицательная, то у Вовочки забирается соответствующая сумма, если не хватает, то можно делать ходы в долг. В какой-то момент после перекладывания, все монетки оказались в первоначальных стопках. Какое максимальное количество монет мог заработать Вовочка?
Задачу решили:
35
всего попыток:
37
Найти сумму цифр натурального числа 3N, если известно, что сумма цифр в десятичной записи N равна 100, а сумма цифр числа 44n равна 800.
Задачу решили:
34
всего попыток:
37
Для конечного множества чисел известно, что среди любых трех чисел имеются два, сумма которых принадлежит этому множеству. Найти наибольшее число элементов в множестве.
Задачу решили:
31
всего попыток:
50
Гидры состоят из голов и шей (любая шея соединяет ровно две головы). Одним ударом меча можно снести все шеи, выходящие из какой-то головы A гидры. Но при этом из головы A мгновенно вырастает по одной шее во все головы, с которыми A не была соединена. Геракл побеждает гидру, если ему удастся разрубить ее на две несвязанные шеями части. Найдите наименьшее N, при котором Геракл сможет победить любую стошеюю гидру, нанеся не более, чем N ударов.
Задачу решили:
44
всего попыток:
52
Найдите количество троек натуральных чисел x, y, z таких, что (x+1)y+1+1=(x+2)z+1.
Задачу решили:
51
всего попыток:
60
Последовательность (an) задана следующим правилом: a1=1, Найти минимальное n>1, когда an=1.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|