img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: fortpost решил задачу "Три числа и степени" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 37
всего попыток: 43
Задача опубликована: 08.04.20 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

В выражении DONALD+GERALD = ROBERT каждой букве соответствует  одна цифра от 0 до 9. Известно, что D=5. В качестве ответа запишите все цифры буквами в порядке от 0 до 9.

Задачу решили: 29
всего попыток: 30
Задача опубликована: 13.04.20 08:00
Прислал: admin img
Источник: Венгерская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

В десятичной записи квадрата некоторого числа, содержащей более одного знака, число десятков равно 7. Какой цифрой заканчивается квадрат этого числа?

Задачу решили: 34
всего попыток: 44
Задача опубликована: 18.04.20 08:00
Прислал: admin img
Источник: Венгерская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Найти количество натуральных чисел в диапазоне от 3 до 2020 , которые не могут быть представлены в виде суммы последовательных натуральных чисел.

Задачу решили: 27
всего попыток: 28
Задача опубликована: 20.04.20 08:00
Прислал: admin img
Источник: Венгерская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

На шахматной доске 8×8 проведена прямая линия. Какое максимальное число клеток она может пересекать?

Задачу решили: 34
всего попыток: 57
Задача опубликована: 24.04.20 08:00
Прислал: admin img
Источник: Московская Математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 200
Лучшее решение: MMM (MMM MMM)

Натуральные числа m и n взаимно просты. Найдите наибольший общий делитель чисел m+2000n и n+2000m?

Задачу решили: 37
всего попыток: 44
Задача опубликована: 03.05.20 08:00
Прислал: admin img
Источник: Международная математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Marutand

Натуральное число в десятичной записи заканчивается на цифру 6. Когда эту цифру перенесли в начало, то исходное число увеличилось в 4 раза. Найти сумму двух наименьших таких чисел.

Задачу решили: 39
всего попыток: 53
Задача опубликована: 20.05.20 08:00
Прислал: admin img
Источник: Польская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

В записи 30?0?03 вопросительные знаки заменили на цифры и получили число, которое стало делиться на 13 нацело. Найдите сумму всех чисел, которые могли получиться. 

Задачу решили: 46
всего попыток: 57
Задача опубликована: 26.06.20 08:00
Прислал: admin img
Источник: Математический праздник
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

Найдите сумму всех трехзначных простых чисел, состоящих из разных цифр, в которых последняя цифра равна сумме двух первых.

Задачу решили: 32
всего попыток: 50
Задача опубликована: 05.10.20 08:00
Прислал: admin img
Источник: Международная математическая олимпиада
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: mikev

Четыре действительных числа x1, x2, x3, x4 таковы, что каждое число, сложенное с произведением остальных, равно 2. Сколько различных таких четвёрок существует?

Задачу решили: 39
всего попыток: 42
Задача опубликована: 23.11.20 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: mikev

Найдите количество пар натуральных чисел (x, y) удовлетворяющих уравнения 2x=3y+5. В ответе укажите сумму значений возможных x.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.