img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 70
всего попыток: 83
Задача опубликована: 16.12.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: pete

Найдите сумму всех простых чисел, которые являются одновременно суммой двух простых чисел и разностью двух простых чисел.

Задачу решили: 40
всего попыток: 155
Задача опубликована: 18.12.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: VFChistov (Виктор Чистяков)

В стране 1993 города, и из каждого выходит не менее 93 дорог. Известно, что из любого города можно проехать по дорогам в любой другой. Дорога соединяет между собой два города. За какое минимальное количество пересадок можно гарантированно добраться из одного города в любой другой?

Задачу решили: 43
всего попыток: 51
Задача опубликована: 25.12.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: plush

Найдите максимальную сумму всех простых чисел p, q, r и s таких, что их сумма — простое число. А числа p2 + qs и p2 + qr — квадраты натуральных чисел. (Числа p, q, r и s предполагаются различными.) 

Задачу решили: 55
всего попыток: 60
Задача опубликована: 30.12.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Найдите сумму всех простых p таких, что число p2 + 11 имеет ровно 6 различных делителей (включая единицу и само число).

Задачу решили: 53
всего попыток: 76
Задача опубликована: 15.01.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Пусть P(n) - это произведение всех ненулевых цифр натурального числа n. Найдите P(1)+P(2)+...+P(1000).

Задачу решили: 45
всего попыток: 63
Задача опубликована: 20.01.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Oleg2013

Назовем билет с номером от 000000 до 999999 отличным, если разность некоторых двух соседних цифр его номера равна 5. Найдите число отличных билетов.

+ 4
  
Задачу решили: 42
всего попыток: 54
Задача опубликована: 25.01.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Точечный прожектор, находящийся в вершине B равностороннего треугольника ABC, освещает угол α. Найдите сумму всех таких значений α, не превосходящих 60°, что при любом положении прожектора, когда освещенный угол целиком находится внутри угла ABC, из освещенного и двух неосвещенных отрезков стороны AC можно составить треугольник.

+ 1
  
Задачу решили: 34
всего попыток: 38
Задача опубликована: 01.02.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Дан набор, состоящий из 2015 чисел таких, что если каждое число в наборе заменить на сумму остальных, то получится тот же набор.  Найдите произведение чисел в наборе.

Задачу решили: 38
всего попыток: 41
Задача опубликована: 03.02.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Назовем медианой системы 2n точек плоскости прямую, проходящую ровно через две из них, по обе стороны от которой точек этой системы поровну. Какое наименьшее количество медиан может быть у системы из 2016 точек, никакие три из которых не лежат на одной прямой?

Задачу решили: 55
всего попыток: 57
Задача опубликована: 08.02.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: georgp

На сторонах AB и BC равностороннего треугольника ABC взяты точки D и K, а на стороне AC — точки E и M так, что DA+AE = KC+CM = AB. Найдите угол между прямыми DM и KE (в градусах).

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.