img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к решению задачи "Утроение октаэдра" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 44
всего попыток: 56
Задача опубликована: 06.04.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: marzelik

Путь от платформы A до платформы B электропоезд прошел за X минут (0 < X < 60). Найдите X, если известно, что как в момент отправления от A, так и в момент прибытия в B угол между часовой и минутной стрелками равнялся X градусам.

Задачу решили: 40
всего попыток: 44
Задача опубликована: 13.04.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Дан параллелограмм ABCD с углом A, равным 60?. Точка O — центр окружности, описанной около треугольника ABD. Прямая AO пересекает биссектрису внешнего угла C в точке K. Найдите отношение OK/AO.

Задачу решили: 35
всего попыток: 37
Задача опубликована: 10.06.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Выпуклый многоугольник разрезают непересекающимися диагоналями на остроугольные треугольники. Какое максимальное количество способов возможно.

+ 2
  
Задачу решили: 39
всего попыток: 56
Задача опубликована: 13.06.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: ChLa (Анатолий Виктор Лакеев Чистяков)

Найдите все такие пары (x, y) натуральных чисел, что x + y = an, x2 + y2 = am для некоторых натуральных a, n, m. В ответе укажите количество таких пар, в которых оба числа меньше 100.

Задачу решили: 41
всего попыток: 48
Задача опубликована: 20.06.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Найдите количество пар (a, b) натуральных чисел таких, что при любом натуральном n число an + bn является точной (n+1)-й степенью.

+ 4
  
Задачу решили: 36
всего попыток: 53
Задача опубликована: 22.06.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: ChLa (Анатолий Виктор Лакеев Чистяков)

Известно, что существует число S, такое, что если a+b+c+d=S и 1/a+1/b+1/c+1/d=S (a, b, c, d отличны от нуля и единицы), то 1/(a−1)+1/(b−1)+1/(c−1)+1/(d−1)=S. Найти S2

Задачу решили: 42
всего попыток: 54
Задача опубликована: 22.07.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Random (Руслан Головин)

Какое наибольшее число фишек можно поставить на клетки шахматной доски так, чтобы на любой горизонтали, вертикали и диагонали находилось четное число фишек?

Задачу решили: 40
всего попыток: 51
Задача опубликована: 29.07.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: VFChistov (Виктор Чистяков)

Найти сумму натуральных чисел на которые можно сократить дробь (3m − n)/(5n + 2m), если известно, что она сократима и что числа m и n взаимно просты.

Задачу решили: 30
всего попыток: 45
Задача опубликована: 15.08.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

В правильном десятиугольнике ABCDEFGHIJ со стороной 1 проведена прямая Q1Q2, так что в треугольнике Q1AQ2: |Q1A|+|AQ2|=1. Найдите сумму всех углов в градусах, под которыми виден отрезок Q1Q2 из всех вершин за исключением вершины A.

+ 2
+ЗАДАЧА 1415. 4 синуса и 4 косинуса (В. Сендеров, Л. Ященко)
  
Задачу решили: 44
всего попыток: 57
Задача опубликована: 12.09.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: crazor (Дмитрий Мисерев)

Найти количество корней уравнения sin(sin(sin(sin(x))))=cos(cos(cos(cos(x)))).

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.