img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 33
всего попыток: 61
Задача опубликована: 18.03.20 08:00
Прислал: admin img
Источник: Венгерская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Чему равно наибольшее число острых углов в плоском (несамопересекающемся) 2020-угольнике?

Задачу решили: 34
всего попыток: 40
Задача опубликована: 20.03.20 08:00
Прислал: admin img
Источник: Венгерская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Marutand

Пусть a1, a2, ..., a2020 - некоторая перестановка натуральных чисел 1, 2, ..., 2020. Найти наибольшее возможное значение суммы |a1-1|+|a2-2|+...+|a2020-2020|.

Задачу решили: 41
всего попыток: 41
Задача опубликована: 25.03.20 08:00
Прислал: admin img
Источник: Венгерская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

На горизонтальной плоскости из трех точек отстоящих от основания антенны на 100, 200 и 300 м, углы, под которыми она видна в сумме составляют 90°. Определите высоту антенны.

Задачу решили: 28
всего попыток: 32
Задача опубликована: 27.03.20 08:00
Прислал: admin img
Источник: Венгерская математическая олимпиада
Вес: 2
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

Какое наименьшее количество кругов радиуса 1 нужно, чтобы покрыть круг радиуса 2?

Задачу решили: 34
всего попыток: 44
Задача опубликована: 18.04.20 08:00
Прислал: admin img
Источник: Венгерская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Найти количество натуральных чисел в диапазоне от 3 до 2020 , которые не могут быть представлены в виде суммы последовательных натуральных чисел.

Задачу решили: 34
всего попыток: 57
Задача опубликована: 24.04.20 08:00
Прислал: admin img
Источник: Московская Математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 200
Лучшее решение: MMM (MMM MMM)

Натуральные числа m и n взаимно просты. Найдите наибольший общий делитель чисел m+2000n и n+2000m?

Задачу решили: 37
всего попыток: 44
Задача опубликована: 03.05.20 08:00
Прислал: admin img
Источник: Международная математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Marutand

Натуральное число в десятичной записи заканчивается на цифру 6. Когда эту цифру перенесли в начало, то исходное число увеличилось в 4 раза. Найти сумму двух наименьших таких чисел.

Задачу решили: 41
всего попыток: 43
Задача опубликована: 25.05.20 08:00
Прислал: admin img
Источник: Польская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: MMM (MMM MMM)

В треугольнике углы A, B и C такие, что cos3A+cos3B+cos3C=1. Найти наибольший угол треугольника в градусах.

Задачу решили: 28
всего попыток: 36
Задача опубликована: 17.08.20 08:00
Прислал: admin img
Источник: Международная математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Mosk_

Для угла x и чисел a, b, c и cos x верно соотношение acos2x+bcosx+c=0. Составьте квадратичное соотношение с числами a, b и c для cos 2x. В качестве ответа введите сумму коэффициентов таких, что наибольший общий делитель их был равен 1 для a = 12, b = 8, с = -3..

Задачу решили: 29
всего попыток: 32
Задача опубликована: 07.10.20 08:00
Прислал: admin img
Источник: Международная математическая олимпи...
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

В треугольник со сторонами 5, 6 и 9 вписан круг и построены к нему касательные, параллельные сторонам треугольника. Эти касательные отсекают три новых треугольника, в каждый из которых также вписаны круги. Вычислите сумму площадей всех четырех кругов. Эта сумма представляется в виде π*p/q, где p и q - целые числа. В качестве ответа введите p/q.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.