Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
21
всего попыток:
64
У кладовщика есть 120 кг сахара, двухчашечные весы и гиря на 8 кг. За какое минимальное количество взвешиваний можно отвесить 35 кг сахара?
Задачу решили:
23
всего попыток:
30
Внутри треугольника ABC размещена точка D так, что величины углов DAC, DAB, DBA равны, соответственно, 24, 30 и 18 градусов, |CD| = |CB|. Найдите величину угла CDB в градусах.
Задачу решили:
34
всего попыток:
70
Сколько всего четырёхугольников (включая невыпуклые) составляют линии в треугольнике?
Задачу решили:
45
всего попыток:
170
Площадь и периметр треугольника одно и то же минимальное целое число. Найдите это число.
Задачу решили:
27
всего попыток:
53
Трехчлены x2+ax+b и x2+ax-b, где a и b - натуральные числа и НОД(a,b)=1, приводимы в целых числах (т. е. могут быть представлены в виде произведения двучленов с целыми коэффициентами). Найти минимальное значение b, для которого существуют два различных значения a.
Задачу решили:
18
всего попыток:
22
Внутри равностороннего треугольника ABC случайным образом выбрана точка D. Из отрезков AD, BD и CD составлен треугольник. Определите его углы, если известно, что угол ADB = α, угол CDA = β.
Задачу решили:
22
всего попыток:
31
Пусть x1, x2, x3, x4, x5 - натуральные числа, которые удовлетворяют соотношениям: Скольким сушествует таких различных наборов (x1, x2, x3, x4, x5)?
Задачу решили:
34
всего попыток:
47
Обезьянке, у которой не было ни одного кокоса, вечером подарили волшебное дерево. С дерева каждый день рано утром падает один кокос. На рынке в середине дня можно купить новое точно такое же дерево - оно стоит 12 кокосов. Уже на следующий день рано утром новое дерево даст первый кокос. Обезьянка хочет накопить 48 кокосов, и она придумала способ, как сделать это за наименьшее число дней. На какой по счёту день обезьянка накопит не меньше 48 кокосов? Замечание: Первым считаем день, когда обезьянке подарили дерево (а первый кокос появился у обезьянки на второй день). Продавать деревья нельзя.
Задачу решили:
15
всего попыток:
20
Для произвольного треугольника ABC есть внутренняя точка K, являющаяся общей вершиной трех равных квадратов, по две остальные вершины которых лежат на сторонах треугольника. Если описать окружность с центром в этой точке и радиусом, равным стороне квадрата, - она пересечёт стороны треугольника как раз в этих шести вершинах. Найдите квадрат радиуса этой окружности для треугольника со сторонами (7,15,20).
Задачу решили:
29
всего попыток:
37
sin(2x)+sin(2y)=1/3, Найдите tg(x)+tg(y).
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|