Лента событий:
vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
110
всего попыток:
715
Окружим Землю вдоль экватора ремнём, так чтобы он плотно прилегал к поверхности по всей длине. Землю будем считать идеальным шаром с радиусом 6 400 000 метров. Увеличим длину ремня на 1 метр. Теперь возьмём за одну точку ремня и натянем его так, чтобы ремень плотно прилегал к противоположной точке экватора, в результате точка, за которую мы потянули, поднимется над экватором на некоторую высоту. Чему будет равна эта высота? В ответе укажите ближайшее целое число метров.
Задачу решили:
73
всего попыток:
90
Для натуральных чисел a, m, n (101 ≤ a ≤ 199) выполнены следующие два условия:
Задачу решили:
54
всего попыток:
147
Найдите минимальное натуральное число n, n>2, такое что сумма квадратов последовательных n натуральных чисел равна квадрату некоторого натурального числа.
Задачу решили:
18
всего попыток:
122
Найти количество пар взаимно-простостых целых чисел (m, n), таких что 0 < m < n < 10100, и m | (n2-11) и n | (m2-11).
Задачу решили:
48
всего попыток:
56
Пусть m и n - различные натуральные числа такие, что их средние гармоническое, геометрическое и арифметическое тоже натуральные числа. Чему равно минимальное возможное значение среднего арифметического?
Задачу решили:
53
всего попыток:
65
Известно, что [x+0,19]+[x+0,20]+...+[x+0,91]=546. Найдите [100x]. ([x] - целая часть числа x.)
Задачу решили:
97
всего попыток:
109
Периметр одного треугольника равен 25, второго - 35, шестиугольной звезды - 50. Чему равен периметр зеленого шестиугольника?
Задачу решили:
52
всего попыток:
57
На доске были написаны несколько различных натуральных чисел. Сумму этих чисел поделили на их произведение, а после этого стерли самое маленькое число и поделили сумму оставшихся чисел на их произведение. Второй результат оказался в 3 раза больше первого. Какое число стерли?
Задачу решили:
48
всего попыток:
53
У нескольких крестьян есть 128 овец. Если у кого-то из них оказывается не менее половины всех овец, остальные сговариваются и раскулачивают его: каждый берет себе столько овец, сколько у него уже есть. Если у двоих по 64 овцы, то раскулачивают кого-то одного из них. Произошло 7 раскулачиваний. Среди крестьян выбирается тот, у кого стало больше всех овец. Сколько у него овец?
Задачу решили:
41
всего попыток:
46
Какова наибольшая длина арифметической прогрессии из натуральных чисел a1, a2, .., an, с разностью 2, обладающей свойством: a2k+1 - простое при всех k = 1, 2, . . . , n?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|