img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: solomon добавил комментарий к задаче "Параллелограмм и две биссектрисы - 3" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 88
всего попыток: 186
Задача опубликована: 02.12.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100

Три десятичных числа сложили в "столбик"

  AAA
+ BBB
  ССС
------
  DDD

Разные буквы означают разные цифры. Сколько возможно вариантов решения для этой записи?

Задачу решили: 38
всего попыток: 403
Задача опубликована: 04.12.15 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100

Два десятичных числа сложили в "столбик"

  ABC
+ DEF
------
  IJK

Разные буквы означают разные цифры. Сколько возможно вариантов решения для этой записи?

Задачу решили: 48
всего попыток: 58
Задача опубликована: 07.12.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: nellyk

Найдите наибольшее натуральное число, из которого вычеркиванием цифр нельзя получить число, делящееся на 11.

Задачу решили: 28
всего попыток: 118
Задача опубликована: 09.12.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100

На листке первый игрок записал число 0. Затем по очереди справа к выражению второй пишет знак плюс или минус, а первый одно из натуральных чисел от 1 до 2015. Оба делают по 2015 ходов, причем первый записывает каждое из чисел от 1 до 2015 ровно по одному разу. В конце игры первый игрок получает выигрыш, равный модулю алгебраической суммы, написанной на листке. Какой наибольший выигрыш он может себе гарантировать?

Задачу решили: 71
всего попыток: 115
Задача опубликована: 14.12.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

Грузчики Коля и Петя носят ящики. Переноска маленького ящика занимает у Пети 1 минуту, а у Коли 3 минуты. Зато большой ящик Коля переносит за 5 минут, а Петя — за 6. Всего им нужно перенести 10 больших и 10 маленьких ящиков. За какое наименьшее количество минут они могут это сделать?

Задачу решили: 60
всего попыток: 74
Задача опубликована: 21.12.15 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Kf_GoldFish

Как-то Кролик торопился на встречу с осликом Иа-Иа, но к нему неожиданно пришли Винни-Пух и Пятачок. Будучи хорошо воспитанным, Кролик предложил гостям подкрепиться. Пух завязал салфеткой рот Пятачку и в одиночку съел 10 горшков меда и 22 банки сгущенного молока, причем горшок меда он съедал за 2 минуты, а банку молока — за минуту. Узнав, что больше ничего сладкого в доме нет, Пух попрощался и увел Пятачка. Кролик с огорчением подумал, что он бы не опоздал на встречу с осликом, если бы Пух поделился с Пятачком. Зная, что Пятачок съедает горшок меда за 5 минут, а банку молока за 3 минуты, Кролик вычислил наименьшее время, за которое гости смогли бы уничтожить его запасы.

Чему равно это время? (Банку молока и горшок меда можно делить на любые части).

Задачу решили: 41
всего попыток: 57
Задача опубликована: 04.01.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: логикаimg

В колоде 2016 карт. Часть из них лежит рубашками вверх, остальные - рубашками вниз. За один ход разрешается взять несколько карт сверху, перевернуть полученную стопку и снова положить ее сверху колоды. 

За какое наименьшее число ходов при любом начальном расположении карт можно добиться того, чтобы все карты лежали рубашками вниз?

Задачу решили: 54
всего попыток: 87
Задача опубликована: 11.01.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: georgp

В классе 16 учеников. Каждый месяц учитель делит класс на две группы. Какое наименьшее количество месяцев должно пройти, чтобы любые два ученика в какой-то из месяцев оказались в разных группах?

Задачу решили: 52
всего попыток: 58
Задача опубликована: 13.01.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: nellyk

Найти сумму всех x1, x2, …, x100 > 0 таких, что:
x1+1/x2=4
x2+1/x3=1
x3+1/x4=4

X99+1/x100=4
x100+1/x1=1

Задачу решили: 65
всего попыток: 75
Задача опубликована: 22.01.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: snape

Все 5 представленных на рисунке прямоугольников, включая объединяющий, подобны.

Прямоугольники

Найти отношения площадей А и В.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.