![]()
Лента событий:
TALMON решил задачу "Параллелограмм и окружность - 2" (Математика):
![]()
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
50
всего попыток:
57
Вершины квадрата PQRS, лежат на сторонах остроугольного треугольника ABC. Вершины P и Q лежат на стороне AB, вершина R лежит на стороне BC, а вершина S лежит на стороне AC. Длина стороны квадрата равна 4, а |AB|=8. Надите площадь треугольника? ![]()
Задачу решили:
57
всего попыток:
67
Найдите все целые решения уравнения (x-8)(x-10)=2y. В качестве ответа введите сумму всех возможных x. ![]()
Задачу решили:
58
всего попыток:
60
Найти сумму всех таких целых чисел n для которых n+125 и n+201 являются квадратами целых чисел. ![]()
Задачу решили:
56
всего попыток:
58
p и q - простые числа такие, что pq+1=qp. Найдите наибольшее возможное произведение pq. ![]()
Задачу решили:
51
всего попыток:
60
Длины двух сторон треугольника равны 31 и 22. Медианы, проведенные к этим сторонам, перпендикулярны. Найти длину третьей стороны. ![]()
Задачу решили:
30
всего попыток:
54
Найдите 20-е по счету натуральное число, сумма цифр которого равна 2020. ![]()
Задачу решили:
47
всего попыток:
56
Найдите 2020-е по счету число натурального ряда, которое нельзя представить в виде произведения двух последовательных чисел ![]()
Задачу решили:
23
всего попыток:
48
Внутри квадрата расположены N точек так, что никакие три из N+4 точек (N поставленных и 4 вершины квадрата) не лежат на одной прямой. Некоторые из этих N+4 точек соединены отрезками так, что все отрезки не пересекаются (но могут иметь общие концы). Какое минимальное число точек необходимо поставить,чтобы оказалось не менее 2020 отрезков (не считая сторон квадрата)? ![]()
Задачу решили:
50
всего попыток:
73
Последовательность чисел 1, 11, 20, 102, 111, ... интересна тем, что сумма цифр каждого из них равна количеству цифр из которых оно состоит. Найдите 22-е число в этой последовательности. ![]()
Задачу решили:
21
всего попыток:
29
На сторонах AB, BC и CA треугольника ABC расположены точки P, Q и R соответственно, при этом |AP| = |AR|, |BP| = |BQ| и |CQ| = |CR|. Какое максимальное количество разных наборов таких точек P, Q, R может существовать для протзвольного треугольника ABC?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|