Лента событий:
solomon
добавил комментарий к задаче
"Параллелограмм и две биссектрисы - 3"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
38
всего попыток:
60
В равнобедренном треугольнике ABC (|AB|=|BC|=10) перпендикуляр из вершины C к стороне AB пересекает её в точке D, |AD|=6. Перпендикуляр из точки D к стороне AC пересекает её в точке E. Найти |BE|. Ответ укажите округлив до второго знака после запятой.
Задачу решили:
46
всего попыток:
57
Найдите сумму всех трехзначных простых чисел, состоящих из разных цифр, в которых последняя цифра равна сумме двух первых.
Задачу решили:
36
всего попыток:
47
Найдите минимальную длину отрезка, который содержит все решения неравенства:
Задачу решили:
32
всего попыток:
50
Четыре действительных числа x1, x2, x3, x4 таковы, что каждое число, сложенное с произведением остальных, равно 2. Сколько различных таких четвёрок существует?
Задачу решили:
32
всего попыток:
32
Найдите сумму всех целых положительных чисел n таких, что произведение цифр в десятичной записи которых равно n2-10n-22.
Задачу решили:
39
всего попыток:
42
Найдите количество пар натуральных чисел (x, y) удовлетворяющих уравнения 2x=3y+5. В ответе укажите сумму значений возможных x.
Задачу решили:
31
всего попыток:
52
Два парахода идут по морю с постоянными скоростями по фиксированным направлениям. В 9:00 они, когда они начали свое движение расстояние между ними было 20 км, в 9:35 - 15 км, а в 9:55 - 13 км. Через сколько минут после начала движения расстояние между ними стало минимальным?
Задачу решили:
30
всего попыток:
35
Найдите количество непрерывных функций f(x), определенных для всех действительных x и удовлетворяющих уравнения xf(y)+yf(x)=(x+y)f(x)f(y) для произвольных x и y.
Задачу решили:
30
всего попыток:
41
Найдите все действительные x, принадлежащие отрезку [0, 2π] и удовлетворяющие неравенству
Задачу решили:
24
всего попыток:
49
Шахматную доску 8×8 разрезали на n прямоугольников так, что в каждом прямоугольнике одинаковое число белых и черных клеток, и при этом, если ai - число клеток в i-м прямоугольнике, то a1 < a2 < ... < an. Найдите наибольшее число n, при котором возможно такое разбиение. В ответе укажите количество возможных различных разбиений a1, a2, ..., an при полученном n.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|