Лента событий:
solomon
добавил комментарий к задаче
"Параллелограмм и две биссектрисы - 3"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
16
всего попыток:
16
Как разрезать правильный пятиугольник на 4 треугольника так, чтобы из них можно было составить равнобедренную трапецию?
Задачу решили:
35
всего попыток:
35
Три квадрата расположены как на рисунке. Их площади указаны. Найти площадь многоугольника ABCDEF.
Задачу решили:
34
всего попыток:
39
Квадрат и прямоугольник размещены так, что выделенные точки лежат на окружности (см. рис.). Площадь квадрата равна 7, площадь прямоугольника - 5. Найти площадь жёлтого квадрата.
Задачу решили:
41
всего попыток:
46
В выражении слева бесконечное число слагаемых, справа - произведений, x > 0: Найти x.
Задачу решили:
43
всего попыток:
47
Правильный шестиугольник разделен на 4 треугольника и 3 прямоугольника. Найдите отношение суммы площадей треугольников к сумме площадей прямоугольников.
Задачу решили:
33
всего попыток:
46
О натуральных числах m и n известно, что m+143n делится на 7, m+91n делится на 11, а m+77n делится на 13. Какое наименьшее значение может принимать m+n.
Задачу решили:
34
всего попыток:
41
В правильный десятиугольник вписана звезда. Пусть S1 - площадь внутреннего синего пятиугольника, S2 - площадь звезды, а S3 - площадь десятиугольника. Найдите (S1+S2)/S3.
Задачу решили:
34
всего попыток:
64
На боковой стороне AC равнобедренного треугольника ABC (|AC|=|BC|) с основанием |AB|=1 взята точка D, для которой |CD|=1, а |BD|2=2. Найдите угог при вершине C. Во сколько раз этот угол меньше полного угла (360 градусов).
Задачу решили:
30
всего попыток:
37
У Кости было 26 одинаковых на вид монет, среди них 21 – настоящие, которые весят поровну, и 5 – фальшивые, которые тоже весят поровну, но несколько легче. Все вместе они весили 421 г. Костя потерял 5 монет, и теперь оставшиеся весят только 340 г. Сколько весит настоящая монета?
Задачу решили:
38
всего попыток:
40
Найдите сумму всех n таких, что n(1!+2!+...+n!)=(n+1)!
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|