Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
23
всего попыток:
34
На какое минимальное число частей можно разрезать прямыми линиями любой треугольник, так что из них можно сложить равнобедренный треугольник той же площади.
Задачу решили:
45
всего попыток:
60
Натуральное число n > 8 назовем хорошим, если каждое из чисел n, n+1, n+2 и n+3 делится на сумму своих цифр. Некоторое хорошее число заканчивается цифрой 8. Какая предпоследняя цифра у него?
Задачу решили:
41
всего попыток:
46
Какова наибольшая длина арифметической прогрессии из натуральных чисел a1, a2, .., an, с разностью 2, обладающей свойством: a2k+1 - простое при всех k = 1, 2, . . . , n?
Задачу решили:
38
всего попыток:
65
В какое наибольшее число цветов можно раскрасить все клетки< доски размера 10x10 так, чтобы в каждой строке и в каждом столбце находились клетки не более, чем пяти различных цветов?
Задачу решили:
48
всего попыток:
55
В вершинах кубика написали числа от 1 до 8, а на каждом ребре модуль разности чисел, стоящих в его концах. Какое наименьшее количество различных чисел может быть написано на ребрах?
Задачу решили:
28
всего попыток:
51
На окружности расположена тысяча непересекающихся дуг, и на каждой из них написаны два натуральных числа. Сумма чисел каждой дуги делится на произведение чисел дуги, следующей за ней по часовой стрелке. Каково наибольшее возможное значение наибольшего из написанных чисел?
Задачу решили:
37
всего попыток:
65
На вечеринку пришли 100 человек. Затем те, у кого не было знакомых среди пришедших, ушли. Затем те, у кого был ровно 1 знакомый среди оставшихся, тоже ушли. Затем аналогично поступали те, у кого было ровно 2, 3, 4, . . . , 99 знакомых среди оставшихся к моменту их ухода. Какое наибольшее число людей могло остаться в конце?
Задачу решили:
31
всего попыток:
42
На встречу выпускников пришло 45 человек. Оказалось, что любые двое из них, имеющие одинаковое число знакомых среди пришедших, не знакомы друг с другом. Какое наибольшее число пар знакомых могло быть среди участвовавших во встрече?
Задачу решили:
44
всего попыток:
64
По двум пересекающимся дорогам с равными постоянными скоростями движутся два автомобиля. Оказалось, что как в 17.00, так и в 18.00 первый находился в два раза дальше от перекрестка, чем второй. Через какое наибольшее количество минут после 17:00 второй автомобиль мог проехать перекресток?
Задачу решили:
34
всего попыток:
58
Имеется набор гирь со следующими свойствами: 1) В нем есть 5 гирь, попарно различных по весу. 2) Для любых двух гирь найдутся две другие гири того же суммарного веса. Какое наименьшее число гирь может быть в этом наборе?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|