img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Kf_GoldFish добавил комментарий к решению задачи "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
+ 1
+ЗАДАЧА 1414. Точки и раскраски стрелок (И. Богданов, Г. Челноков)
  
Задачу решили: 27
всего попыток: 31
Задача опубликована: 09.09.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Имеются точки с номерами 1, 2, . . . , 12. Каждые две точки соединены стрелкой от меньшего номера к большему. Раскраску всех стрелок в красный и синий цвета назовем однотонной, если нет двух таких точек A и B, что от A до B можно добраться и только по красным стрелкам, и только по синим. Найдите количество однотонных раскрасок.

+ 2
+ЗАДАЧА 1415. 4 синуса и 4 косинуса (В. Сендеров, Л. Ященко)
  
Задачу решили: 44
всего попыток: 57
Задача опубликована: 12.09.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: crazor (Дмитрий Мисерев)

Найти количество корней уравнения sin(sin(sin(sin(x))))=cos(cos(cos(cos(x)))).

+ 2
+ЗАДАЧА 1418. Степени (А. Ковальджи, В. Сендеров)
  
Задачу решили: 37
всего попыток: 39
Задача опубликована: 19.09.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Найти максимальное n такое, что при некотором натуральном k>1 существуют взаимно простые числа a и b для которых верно равенство: ak+bk=3n.

Задачу решили: 41
всего попыток: 116
Задача опубликована: 23.09.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Матрицу 10x10 заполнили целыми числами от 1 до 100 так, что сумма любых двух чисел на соседних клетках не превосходит некоторого целого числа M. Найдите минимально возможное M.

+ 8
  
Задачу решили: 74
всего попыток: 80
Задача опубликована: 26.09.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Bulat (Миха Булатович)

Найти x+y, если известно, что (x+(x2+1)1/2)(y+(y2+1)1/2)=1

Задачу решили: 44
всего попыток: 48
Задача опубликована: 28.09.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

В остроугольном треугольнике ABC точки A2, B2 и C2 - являются серединами высот AA1, BB1 и CC1. Найдите сумму углов B2A1C2, C2B1A2 и A2C1B2 в градусах.

Задачу решили: 38
всего попыток: 42
Задача опубликована: 30.09.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Bulat (Миха Булатович)

Имеется три стопки монет. За один ход можно из одной стопки переложить одну монету в другую. За ход Вовочка зарабатывает количество монет, равное разнице числа монет в стопке, из которой берется монета и числа монет в которую перекладывается. Если разница отрицательная, то у Вовочки забирается соответствующая сумма, если не хватает, то можно делать ходы в долг.

В какой-то момент после перекладывания, все монетки оказались в первоначальных стопках. Какое максимальное количество монет мог заработать Вовочка?

Задачу решили: 22
всего попыток: 28
Задача опубликована: 14.10.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: логикаimg
Лучшее решение: zmerch

В чемпионате по шахматам участвовало 16 игроков. После его окончания каждому участнику выдали отчет на 16 страницах. На первой указано имя участника, на второй - он и те, у кого он выиграл, на третьей - все люди из второго списка и те, у кого они выиграли, и т.д. на последней, 16-й, все участники со страницы 15 и те, у кого они выиграли. Известно, что для любого участника на его последнюю страницу попал человек, которого не было в его одиннадцатом списке. Какое максимальное количество партий чемпионата могло быть сыграно вничью? 

Задачу решили: 39
всего попыток: 248
Задача опубликована: 26.10.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Marutand

В библитотеке Вовочки 2001 книга - по математике, физике и информатике. Если все книга поставить в один ряд, то между любыми двумя книгами по математике стоит хотя бы одна книга, между любыми двумя книгами по физике стоят хотя бы две книги, а между любыми двумя по информатике стоят хотя бы три книги. Какое максимальное количество книг по информатике может быть у Вовочки?

+ 0
+ЗАДАЧА 1437. 5 часов (О. Подлипский)
  
Задачу решили: 36
всего попыток: 42
Задача опубликована: 02.11.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

У вас имеется 5 часов со стрелками. Вы можете любые несколько из них перевести вперед. Для каждых часов время, на которое при этом их перевели, назовем временем перевода. Требуется все часы установить так, чтобы они показывали одинаковое время. За какое наименьшее суммарное количество часов перевода это можно гарантированно сделать?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.