Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
30
всего попыток:
122
Найти максимальное значение выражения a/c+b/d+c/a+d/b, где a, b, c, d различные и a/b+b/c+c/d+d/a=4 и ac=bd.
Задачу решили:
24
всего попыток:
34
Имеются 4 внешне неотличимые монеты весом 1, 2, 3 и 4 грамма. За какое минимальное количество взвешиваний на чашечных весах без гирь можно определить вес каждой монетки?
Задачу решили:
47
всего попыток:
92
Найти целую часть произведения (2/1)×(5/4)×(8/7)×(11/10)×...×(2015/2014)×(2018/2017).
Задачу решили:
37
всего попыток:
55
В компании из 9 мушкетёров некоторые поссорились и вызвали друг друга на дуэль. Известно, что среди них нет трех таких, что все они должны драться друг с другом. Какое максимальное число мушкетёров при любой комбинации гарантированно не поссорятся друг с другом.
Задачу решили:
25
всего попыток:
83
У трех студентов-математиков на шляпах написаны натуральные числа, студенты не знают что написано на своих шляпах, но видят числа на шляпах других. При этом они знают, что одно число равно сумме двух других. Их задача - определить свои числа. Дальше прошел такой диалог. 1: «Я не знаю свое число». Какое число у первого?
Задачу решили:
44
всего попыток:
51
11 дат года записаны в случайном порядке без указания месяцев: 4, 30, 2, 3, 5, 3, 1, 31, 4, 3, 1. Известно, что каждые две соседние (по календарю) даты отстоят друг от друга ровно на 30 дней (как, например, 1 и 31 января). Какое число соответствует августу?
Задачу решили:
35
всего попыток:
88
Студенты-математики в темноте одели шляпы разного цвет, затем включили свет и они увидели чужие шляпы, но не свои. Один из них крикнул: «Если вы видите как минимум 5 красных шляп и как минимум 5 белых, поднимите руку!» Ровно 10 человек подняли руки. Какое минимальное количество студентов могло быть?
Задачу решили:
24
всего попыток:
48
Инъекция f: N→N такова, что ff(n)(m)ff(m)(n)=(f(m+n))2, где, например, f3(n)=f(f(f(n))). Найти f(2017).
Задачу решили:
50
всего попыток:
57
В треугольнике |BA1|=|A1A2|=|A2C|, |AC1|=|C1B|, |C1Y|=4. Найти |XY|.
Задачу решили:
41
всего попыток:
75
Вова и Маша печатают свои собственные деньги, у каждого свои купюры одного достоинства X и Y, соответственно. Как выяснилось, при помощи комбинации купюр можно сложить почти любые положительные целые числа, кроме 15 чисел. Одним из таких чисел является 18. Найти X+Y.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|