Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
30
всего попыток:
79
Пусть действительные числа a, b, c, d такие, что a2+b2+c2+d2=1, а m и M - минимум и максимум выражения: ab+ac+ad+bc+bd+3cd. Найти значение (2(m+M)+1)2.
Задачу решили:
33
всего попыток:
51
Взаимно простые натуральные числа p и q такие, что pn-qn+2=(p+q)n-1 (целое n>1). Найди сумму всех возможных p.
Задачу решили:
34
всего попыток:
66
Найти все целые решения уравнения x2(y3+z3)=315(xyz+7). В ответе укажите сумму значений всех троек (xi+yi+zi), являющихся решениями.
Задачу решили:
33
всего попыток:
49
Пусть x, y и z - стороны треугольника такие, что x+y+z=2. При этом значения выражения xy+yz+zx-xyz находятся в диапазоне (m, n]. Найти m+n.
Задачу решили:
27
всего попыток:
71
В треугольнике, разделенном прямыми линиями на 6 треугольников с целыми площадаями, для некоторых указаны значения площадией при этом одно из значений указано неверно. Найти общую площадь треугольника.
Задачу решили:
61
всего попыток:
74
Треугольний ABC вписан в окружность |AB|=3, |BC|=6. Треугольник ACD - равносторонний. Найти |ED|.
Задачу решили:
31
всего попыток:
55
Найти сумму всех простых чисел не превосходящих 900, которые могут быть представлены в виде (m3-n3)/(m2+n2-mn), где m и n - целые положительные числа.
Задачу решили:
32
всего попыток:
54
Найти максимальное натуральное число N такое, что для некоторого натурального n и нечетного простого p верно: p3n+1+pn+1=Np.
Задачу решили:
28
всего попыток:
199
Для различных натуральных чисел x, y и z известно, что x+y, y+z, x+z и x+y+z являются полными квадратами. Найти минимально возможное из чисел x, y, z.
Задачу решили:
31
всего попыток:
52
На окружности размещены 10 точек. Найдите количество вариантов соединения всех точек попарно 5-ю непересекающимися хордами.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|