Лента событий:
badfomka решил задачу "Календарь будущего" (Информатика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
41
всего попыток:
58
Функция f(n) такая, что f(n)=1 при n<0 и f(n)=1-f(n-1)f(n-3)f(n-4) при n≥0. Найдите сумму значений функции от 0 до 2018.
Задачу решили:
52
всего попыток:
66
Легко вычислить 03+13+23=32, 13+23+33=62. Найдите следующие три последовательные натуральные числа, которые обладают таким же свойством. В ответе укажите первое из них.
Задачу решили:
15
всего попыток:
28
Внутрь куба со стороной ребра 1 вложен другой куб так, что ровно 6 его вершин лежат на 6 разных гранях исходного куба. Определите минимально возможный размер стороны внутреннего куба.
Задачу решили:
41
всего попыток:
60
Если сложить 10 правильных пятиугольников, то можно получить правильный десятиугольник. Точно так же из n правильных m-угольников (m≥5) сложили все возможные правильные n-угольники. Найдите сумму всех различных возможных m.
Задачу решили:
49
всего попыток:
64
x+y+z=x2+y2+z2=x3+y3+z3=12. Найти x4+y4+z4.
Задачу решили:
42
всего попыток:
51
Стороны треугольника a, b, c являются целыми взаимно простыми числами и составляют арифметическую прогрессию. Самый большой угол треугольника в два раза больше самого меньшего. Найти периметр треугольника.
Задачу решили:
52
всего попыток:
64
Найти сумму всех натуральных чисел, квадрат которых представляется в виде 14...4 (единица в начале и затем несколько четверок).
Задачу решили:
39
всего попыток:
60
Найти наименьшее число N такое, что 1+22018+32018+...+N2018 - делится на 2018.
Задачу решили:
36
всего попыток:
80
Найдите количество многочленов P(x) четвертной степени с действительными коэффициентами таких, что P(x2)=P(x)*P(-x).
Задачу решили:
38
всего попыток:
87
Пусть p, q, r, s - корни уравнения с действительными коэффициентами x4-ax3+ax2+bx+c=0. Определите минимум выражения p2+q2+r2+s2.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|