Лента событий:
badfomka решил задачу "Календарь будущего" (Информатика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
32
всего попыток:
44
На вписанной в равносторонний треугольник со стороной 1 окружности выбрана точка так, что расстояния от неё до вершин a, b и c составляют геометрическую прогрессию. Найдите b2.
Задачу решили:
28
всего попыток:
33
Найдите натуральное число n, которое имеет ровно 12 делителей 1=m1 < m2 < ... < m12=n, при этом делитель с номером равным m4-1 равен (m1+m2+m4)*m8.
Задачу решили:
39
всего попыток:
49
sin10x+cos10x=11/36. Найдите sin12x+cos12x.
Задачу решили:
38
всего попыток:
49
Пусть D(n) - количество делителей натурального числа n. Найдите сумму первых шести n таких, что D(n) + D(n+1) = 7.
Задачу решили:
45
всего попыток:
49
1+5*2m=n2, где m и n - натуральные числа. Найдите сумму всех возможных n.
Задачу решили:
36
всего попыток:
45
Функция f отображает натуральные числа в натуральные числа такая, что f(a)f(b) = f(ab), f(a) < f(b), если a < b, f(3) > 6. Найдите минимально возможное значение f(3).
Задачу решили:
40
всего попыток:
42
Пусть P(n) - произведение цифр натурального числа n. Найдите сумму всех n таких, что n2-17n+56=P(n).
Задачу решили:
41
всего попыток:
43
1+xz+yz=НОК(xz,yz), где x, y и z - натуральные числа, а НОК - наименьшее общее кратное. Найти наибольшее значение произведения xyz.
Задачу решили:
15
всего попыток:
16
Укажите необходимое и достаточное условие для целого числа N такого, что для любых многочленов с действительными коэффициентами P(x) и Q(x), для которых P(Q(x)) является многочленом степени N, существует действительное число a, при котором P(a)=Q(a).
Задачу решили:
29
всего попыток:
34
Множество состоит из различных простых чисел таких, что сумма любых трех также является простым. Какое наибольшее количество чисел может содержать такое множество?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|