Лента событий:
Sam777e решил задачу "Дырявый квадрат-3" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
43
всего попыток:
69
Найти сумму всех целых чисел n таких, что
Задачу решили:
60
всего попыток:
122
Найти максимальное натуральное число n такое, что n7+1 делится на n+7.
Задачу решили:
40
всего попыток:
242
В школе учится 100 учеников и для каждого имеется свой шкафчик. Все школьники имеют свои номера, соответствующие номерам шкафчиков. Изначально все шкафчики закрыты. Школьники приходят в порядке нумерации. Когда приходит школьник 1, то он открывает все шкафчики. Школьник 2 закрывает каждый 2-й шкафчик. Школьник 3 изменяет состояние каждого 3-го шкафчика: если открыт, то закрывает, если закрыт, то открывает. Школьник 4 изменяет состояние каждого 4-го шкафчика. И т.д. до 100-го школьника. Если какой-то школьник не приходит, то никто не выполняет за него указанную процедуру. В один из дней все шкафчики были закрыты, кроме 1-го. Сколько в этот день отсутствовало школьников?
Задачу решили:
45
всего попыток:
58
Найти количесто пар натуральных чисел таких n и m (n>=m), что nm=n+m+НОД(n,m), где НОД(n,m) - наибольший общий делитель чисел n и m.
Задачу решили:
60
всего попыток:
65
Найти сумму всех натуральных чисел n таких, что произведение его цифр равно n2-10n-22.
Задачу решили:
21
всего попыток:
32
Пусть a и b - натуральные числа, рассмотрим все 6 возможных попарных произведений чисел a, b, a+2 и b+2. Какое максимальное количество из этих произведений могут быть полными квадратами.
Задачу решили:
35
всего попыток:
54
Пусть k, m, n - натуральные числа меньшие чем 1215. Найти количество упорядоченных троек таких, что k2+7m2+5, m2+7n2+5, n2+7k2+5 - являются целыми квадратами.
Задачу решили:
27
всего попыток:
54
Пусть функция f(x) определена на множестве рациональных чисел и f(m/n)=1/n для взаимно-простых m и n. Найти произведение всех x таких, что f((x-f(x))/(1-f(x)))=f(x)+9/52.
Задачу решили:
38
всего попыток:
62
При представлении числа N в виде N=±1±2±3±...±100 можно в любом месте выбирать знак "плюс" или "минус". Сколько чисел можно представить в таком виде?
Задачу решили:
45
всего попыток:
60
Найдите сумму всех шестизначных чисел, являющихся полными квадратами, и у которых числа, представленные первыми тремя цифрами и последними тремя цифрами, отличаютсю по величине не более чем на единицу.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|