img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Sam777e решил задачу "Дырявый квадрат-3" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 38
всего попыток: 115
Задача опубликована: 21.07.14 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Действительное число x удовлетворяет условию:

1/[x]=1/[2x]+1/[3x]+1/[5x], где [x] - целая часть от x.

Пусть m - наибольшее положительное, а M - наименьшее положительное значения такие, что  m≤x≤M, и M+m представляется в виде нескоратимой дроби p/q. 

Чему равно p+q?

Задачу решили: 24
всего попыток: 116
Задача опубликована: 01.08.14 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгебраimg
Лучшее решение: bbny

Последовательности действительных чисел an, bn (n=0,1, ...) заданы так, что a1=α, b1=β и an+1=αan-βbn, bn+1=βan+αbn для всех n≥1. Найдите количество пар числ (α,β) не равных нулю, таких что a1997=b1 и b1997=a1.

Задачу решили: 39
всего попыток: 92
Задача опубликована: 13.08.14 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: trial (Трибунал Данилов)

Функция f: N→N такова, что f(f(n))+f(n+1)=n+2 для всех натуральных n. Чему равно f(2014)?

Задачу решили: 23
всего попыток: 57
Задача опубликована: 05.09.14 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Пусть n - положительное действительное число, такое что уравнение nx2=n[x2]+x имеет 2014 действительных решений ([x] - целая часть x). Множество всех таких n находятся в минимально возможном полуинтервале (a, b].
Найдите [1000*(b-a)].

Задачу решили: 45
всего попыток: 158
Задача опубликована: 10.09.14 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Vkorsukov

Найти количество функций f: R→R таких, что для всех действительных x и y верно f(x+y)=f(x)f(y)f(xy).

Задачу решили: 34
всего попыток: 132
Задача опубликована: 15.09.14 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: bbny

Найдите количество пар действительных чисел (a, b) таких, что если c является корнем уравнения x2+ax+b=0, то и c2-2 также является корнем.

Задачу решили: 35
всего попыток: 57
Задача опубликована: 24.09.14 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Пусть действительные числа x и y такие, что x2+y2=(x/y+y/x)2. Пусть m - наибольшее, а M - наименьшее возможные числа такие, что верно всегда m≤(x3y3+x2y+xy2+1)/x3y3≤M. Найдите M+m.

Задачу решили: 37
всего попыток: 61
Задача опубликована: 29.09.14 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Пусть a, b, c, d - неравные нулю действительные числа такие, что функция f(x)=(ax+b)/(cx+d) определена на R\{-d/c} и обладает свойствами:

1) f(19)=19

2) f(97)=97

3) f(f(x))=x

Предположим, что имеется единственное число α такое, что α≠f(x) для всех действительных x. Найдите α.

Задачу решили: 33
всего попыток: 47
Задача опубликована: 01.10.14 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: MMM (MMM MMM)

Рассмотрим пары неотрицательных целых чисел (xi,yi) удовлетворяющих равенству: 2x2+x=3y2+y таких, что x1+y1 < x2+y2 < ....

Найдите сумму первых 4-х пар значений x1+y1+x2+y2+x3+y3+x4+y4.

Задачу решили: 53
всего попыток: 71
Задача опубликована: 06.10.14 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: zmerch

Найти сумму всех натуральных n таких, что n2(2n-n3)+1 является целой степенью 7.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.