img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: MikeNik добавил комментарий к задаче "Целочисленные точки на эллипсах - 3" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
+ 0
+ЗАДАЧА 1349. 5 монет (Л. Емельянов)
  
Задачу решили: 43
всего попыток: 51
Задача опубликована: 11.04.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: логикаimg
Лучшее решение: georgp

Среди пяти внешне одинаковых монет 3 настоящие и две фальшивые, одинаковые по весу, но неизвестно, тяжелее или легче настоящих. Как за наименьшее число взвешиваний найти хотя бы одну настоящую монету? В ответе дайте количество взвешиваний.

Задачу решили: 34
всего попыток: 57
Задача опубликована: 20.04.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Даны числа 1, 2,..., N, каждое из которых окрашено либо в черный, либо в белый цвет. Разрешается перекрашиватьв противоположный цвет любые три числа, одно из которых равно полусумме двух других. Найти минимальное N при которо можно сделать все числа белыми?

+ 2
  
Задачу решили: 33
всего попыток: 55
Задача опубликована: 22.04.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: логикаimg

N цифр — единицы и двойки — расположены по кругу. Изображенным назовем число, образуемое несколькими цифрами, расположенными подряд (по часовой стрелке или против часовой стрелки). При каком наименьшем значении N все четырехзначные числа, запись которых содержит только цифры 1 и 2, могут оказаться среди изображенных?

Задачу решили: 37
всего попыток: 42
Задача опубликована: 27.04.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: логикаimg

У вас есть 8 гирек весом 1, 2, 3, ..., 8 грамм, которые выглядят одинаково, но вы знаете какая сколько весит. Сколько нужно взвешиваний, чтобы доказать, что вы знаете вес хотя бы одной гирьки.

Задачу решили: 25
всего попыток: 35
Задача опубликована: 06.05.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: логикаimg

Среди 18 деталей, выставленных в ряд, какие-то три подряд стоящие весят по 99 г, а все остальные — по 100 г. За какое минимальное количество взвешиваний на весах со стрелкой и делениями по 1 грамму можно определить все 99-граммовые детали?

Задачу решили: 38
всего попыток: 65
Задача опубликована: 18.05.16 08:00
Прислал: admin img
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Темы: логикаimg
Лучшее решение: VFChistov (Виктор Чистяков)

В какое наибольшее число цветов можно раскрасить все клетки< доски размера 10x10 так, чтобы в каждой строке и в каждом столбце находились клетки не более, чем пяти различных цветов?

+ 5
  
Задачу решили: 37
всего попыток: 65
Задача опубликована: 27.05.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: логикаimg
Лучшее решение: VFChistov (Виктор Чистяков)

На вечеринку пришли 100 человек. Затем те, у кого не было знакомых среди пришедших, ушли. Затем те, у кого был ровно 1 знакомый среди оставшихся, тоже ушли. Затем аналогично поступали те, у кого было ровно 2, 3, 4, . . . , 99 знакомых среди оставшихся к моменту их ухода. Какое наибольшее число людей могло остаться в конце?

Задачу решили: 120
всего попыток: 130
Задача опубликована: 14.06.16 21:55
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Темы: логикаimg
Лучшее решение: wsz (Жакия Гумаров)

В день рождения дяди Федора почтальон Печкин хочет выяснить, сколько тому лет. Шарик говорит, что дяде Федору больше 11 лет, а кот Матроскин утверждает, что больше 10 лет. Сколько лет дяде Федору, если известно, что ровно один из них ошибся?

Задачу решили: 35
всего попыток: 37
Задача опубликована: 10.06.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Выпуклый многоугольник разрезают непересекающимися диагоналями на остроугольные треугольники. Какое максимальное количество способов возможно.

+ 2
+ЗАДАЧА 1377. Коммерческий турнир (Р. Женодаров, А. Храбров)
  
Задачу решили: 42
всего попыток: 50
Задача опубликована: 15.06.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: логикаimg
Лучшее решение: Oleg2013

В коммерческом турнире по футболу участвовало пять команд. Каждая должна была сыграть с каждой ровно один матч. В связи с финансовыми трудностями организаторы некоторые игры отменили. В итоге оказалось, что все команды набрали различное число очков и ни одна команда в графе набранных очков не имеет нуля. Какое наименьшее числом игр могло быть сыграно в турнире, если за победу начислялось три очка, за ничью — одно, за поражение — ноль?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.