img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: makar243 решил задачу "Реши, если силен" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 91
всего попыток: 105
Задача опубликована: 08.07.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: ChLa (Анатолий Виктор Лакеев Чистяков)

Вовочка кодирует фамилии числами, вот для примера:

Лермонтов - 9133
Пушкин - 61715
Медведев - 8143
Ленин - 51315
Баранов - 723

А как он записал фамилию Толстой?

Задачу решили: 33
всего попыток: 77
Задача опубликована: 11.07.16 08:00
Прислал: admin img
Вес: 1
сложность: 3 img
класс: 6-7 img
баллы: 100
Темы: логикаimg
Лучшее решение: Marutand

Вовочка задумал одно из чисел: 1, 2 или 3. На все вопросы он отвечает только: "да", "нет" или "не знаю". Попробуйте задать ему один вопрос, чтобы узнать задуманное число?

Задачу решили: 36
всего попыток: 56
Задача опубликована: 13.07.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: andervish (Андрей Вишневый)

У выпуклого многогранника 30 граней, и все грани являются треугольниками. Какое наибольшее число вершин, в которых сходится ровно 3 ребра, может быть у такого многогранника?

Задачу решили: 33
всего попыток: 68
Задача опубликована: 15.07.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Найти максимальное натуральное число n ≤ 100 для которого найдутся такие положительные рациональные, но не целые числа a и b, что оба числа a + b и an + bn — целые.

+ 1
+ЗАДАЧА 1391. Гонки (М. Мурашкин)
  
Задачу решили: 33
всего попыток: 56
Задача опубликована: 18.07.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100
Темы: логикаimg
Лучшее решение: TALMON (Тальмон Сильвер)

В гоночном турнире 12 этапов и n участников. После каждого этапа все участники в зависимости от занятого места k получают баллы ak (числа ak натуральны и a1 > a2 > . . . > an). При каком наименьшем n устроитель турнира может выбрать числа a1, . . . , an так, что после предпоследнего этапа при любом возможном распределении мест хотя бы двое участников имели шансы занять первое место.

Задачу решили: 46
всего попыток: 86
Задача опубликована: 20.07.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100

В семейном альбоме есть десять фотографий. На каждой из них изображены три человека: в центре стоит мужчина, слева от мужчины — его сын, а справа — его брат. Какое наименьшее количество различных людей может быть изображено на этих фотографиях, если известно, что все десять мужчин, стоящих в центре, различны?

Задачу решили: 42
всего попыток: 54
Задача опубликована: 22.07.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Random (Руслан Головин)

Какое наибольшее число фишек можно поставить на клетки шахматной доски так, чтобы на любой горизонтали, вертикали и диагонали находилось четное число фишек?

Задачу решили: 53
всего попыток: 83
Задача опубликована: 25.07.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: georgp

По окружности радиуса 40 катится колесо радиуса 18. В колесо вбит гвоздь, который ударяясь об окружность, оставляет на ней отметки. Сколько всего таких отметок оставит гвоздь на окружности? Сколько раз прокатится колесо по всей окружности, прежде чем гвоздь попадет в уже отмеченную ранее точку? Ответ введите в виде рациональной дроби (количество отметок)/(количество оборотов), например, 15/10.

Задачу решили: 67
всего попыток: 75
Задача опубликована: 27.07.16 08:00
Прислал: admin img
Источник: 5
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: azat

Найдите сумму всех натуральных n > 1 для которых n3 − 3 делится на n − 1.

Задачу решили: 40
всего попыток: 51
Задача опубликована: 29.07.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: VFChistov (Виктор Чистяков)

Найти сумму натуральных чисел на которые можно сократить дробь (3m − n)/(5n + 2m), если известно, что она сократима и что числа m и n взаимно просты.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.