Лента событий:
avilow
добавил комментарий к задаче
"Реши, если силён"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
88
всего попыток:
108
Найдите сумму углов x+y+z в градусах.
Задачу решили:
24
всего попыток:
42
Имеется 100 предметов, которые вместе весят 1000 грамм. Число m будем называть средним, если можно отобрать m предметов, которые весят 500 грамм. Какое максимальное количество средних чисел возможно?
Задачу решили:
36
всего попыток:
45
Найдите количество пар действительных чисел b и c таких, что каждое уравнение x2+bx+c=0 и 2x2+(b+1)x+c+1=0 имеют по два целых корня.
Задачу решили:
46
всего попыток:
71
Найдите колчество пар целых чисел (x, y) таких, что (x2-y2)2=1+16y.
Задачу решили:
41
всего попыток:
46
На параболе y = x2+px+q лучи y=x и y=2x при x≥0 высекают две дуги. Эти дуги спроектированы на ось 0x. Найдите разницу длин проекций правой и левой дуг.
Задачу решили:
32
всего попыток:
33
В каждую клетку квадратной таблицы размера (22016−1)×(22016−1) ставится одно из чисел +1 или −1. Расстановку чисел назовем удачной, если каждое число равно произведению всех соседних с ним (соседними считаются числа, стоящие в клетках с общей стороной). Найдите число удачных расстановок.
Задачу решили:
43
всего попыток:
60
Внутри параболы y=x2 расположены несовпадающие окружности O1, O2, O3, . . . так, что при каждом n > 1 окружность On касается ветвей параболы и внешним образом окружности On−1. Найдите диаметр окружности O2016, если известно, что диаметр O1 равен 1 и она касается параболы в ее вершине.
Задачу решили:
35
всего попыток:
37
Найти сумму цифр натурального числа 3N, если известно, что сумма цифр в десятичной записи N равна 100, а сумма цифр числа 44n равна 800.
Задачу решили:
34
всего попыток:
37
Для конечного множества чисел известно, что среди любых трех чисел имеются два, сумма которых принадлежит этому множеству. Найти наибольшее число элементов в множестве.
Задачу решили:
45
всего попыток:
47
Для функции f: R → R для всех x, y, z ∈ R верно f(x+y)+f(y+z)+f(z+x) ≥ 3f(x+2y+3z). f(0)=1. Найти f(1).
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|