img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Mangoost решил задачу "REBUSы" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 130
всего попыток: 147
Задача опубликована: 01.06.11 08:00
Прислал: Timur img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Найдите такое наименьшее натуральное число N, что N/2 — квадрат натурального числа, N/3 — куб натурального числа, а N/5 —  пятая степень натурального числа.

Задачу решили: 16
всего попыток: 368
Задача опубликована: 09.09.11 08:00
Прислал: Timur img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: volinad (Владимир Алексеевич Данилов)

Вернувшись из своего путешествия на Луну, Незнайка решил написать книгу о своих приключениях. Каждый вечер он читал новую главу из неё своим друзьям и однажды прочитал им следующие невероятные события: "Однажды утром Спрутс бросил меня в огромную пещеру с абсолютно гладкими гранитными стенами, которая представляла собой точный куб размерами 100x100x100 метров. Я стоял на краю небольшой ниши, нижний край которой был ровно в центре вертикальной грани этого куба. Выход на волю (его нижний край) был ровно в центре противоположной от меня грани. Присмотревшись, я увидел  канат висящий от выхода до пола. Если бы я как-то спустился на пол пещеры, я легко выбрался бы взобравшись по нему. Однако я был на высоте 50 метров от пола и не мог спрыгнуть. К счастью, у меня был подарок Миги: чудесный моток точно такого же каната. Сколько каната из него ни вытягивай, можно вытянуть еще столько же и так далее. Правда он был немного неудобный, в сечении это был не круг, а квадрат со стороной 2 см. Достаточно толстый, но очень гибкий и скользкий.  Как я ни старался, я так и не смог закрепить канат, чтобы спуститься по нему вниз. Исследовав всю небольшую нишу, я нашел ножницы, которыми можно было перерезать канат. Выхода из ситуации не было, однако поразмыслив я все же смог выбраться!"

"Враньё от первого до последнего слова!" — засмеялись все находившиеся в комнате коротышки, однако профессор Звёздочкин сказал, что при этих условиях у Незнайки действительно был один способ, чтобы выбраться из пещеры, и Знайка с ним согласился. Какое наименьшее количество метров каната нужно было вытянуть Незнайке из мотка, чтобы выбраться? (Считаем, что размеры Незнайки точечные, любой прыжок на любую высоту вверх или вниз смертелен).

Задачу решили: 71
всего попыток: 137
Задача опубликована: 23.03.12 08:00
Прислал: Timur img
Источник: Учебник геометрии
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: 0Vlas

Пусть AB - диаметр некоторой окружности. Из точек A и B, под углами \pi/4 и \pi/6 к AB, проведем хорды AE и BD, пересекающиеся в точке C.

t002.gif

Найдите площадь треугольника CDE, если длина касательных FE и FD равны\frac{28}{\sqrt{1 + \sqrt{3}}}.

 

Задачу решили: 80
всего попыток: 93
Задача опубликована: 27.06.12 08:00
Прислал: Timur img
Источник: Малый Мехмат МГУ
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: 0Vlas

Будем строить множества из 2012 произвольных действительных чисел так, чтобы сумма любых 777 чисел из этого множества была строго положительна. Какое максимально возможное количество отрицательных чисел может быть в таком множестве?

Задачу решили: 38
всего попыток: 187
Задача опубликована: 10.12.12 08:00
Прислал: Timur img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

22551.jpg

Продолжения сторон (AD и BC) и (AB и CD) выпуклого четырехугольника ABCD пересекаются в точках E и F соответственно. Для определенности будем считать, что E и F лежат по одну сторону от прямой AC. (см.рис.) Внутри диагонали AC произвольным образом выбрана точка G. Прямые BG || DH || EI || FJ параллельны друг другу, а точки H, I, J являются точками пересечения соответствующих прямых с прямой AC так, что |DH|=a,  |EI|=b, |FJ|=c. Найдите длину отрезка |BG|, если a=9, b=3, c=6.

Задачу решили: 101
всего попыток: 116
Задача опубликована: 12.12.12 08:00
Прислал: Timur img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: leonid (Леонид Шляпочник)

Найдите максимально возможное значение выражения

x/(x2+3)+y/(y2+3), если x>0, y>0, x·y=1, x,y - действительные числа. 

Задачу решили: 33
всего попыток: 63
Задача опубликована: 19.12.12 08:00
Прислал: Timur img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Для двух натуральных x и k, рассмотрим два числа: x и (x+k). Определим функцию f(k)=i, где i - количество таких чисел xi, что и xi, и xi+k являются точными квадратами некоторых натуральных чисел. Например f(1)=0; f(3)=1 {x=1}; f(21)=2 {x1=4, x2=100} и т.д. В интервале 1<k<212 найдите все такие k, что f(k)=15. В ответе необходимо указать сумму всех таких k.

 

Задачу решили: 67
всего попыток: 101
Задача опубликована: 21.12.12 08:00
Прислал: Timur img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

Найдите минимальное натуральное число k такое, что при любых натуральных n, значение многочлена P(n)=7·n37+37·n7+4·k·n - делится на 259 без остатка.

Задачу решили: 33
всего попыток: 148
Задача опубликована: 04.01.13 08:00
Прислал: Timur img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

1123.jpg

Рассмотрим полуокружность с центром в точке O и радиусом |AO|=|OB|=17. Внутри отрезка OB произвольным образом выбираем точку C при этом |AO|<|AC|<|AB|. С центром в точке C и радиусом |CB|=|CD| построим еще одну полуокружность. Через точку D проведем прямую, перпендикулярную прямой AB и пересекающуюся с большой полуокружностью в точке D'. В фигурный сектор DD'B вписана окружность с центром в точке I и касающаяся прямой DD' и обеих полуокружностей в точках H, G и F соответственно. (см. рис.)

Проведем прямую через точки С и I, которая пересекается с прямой DD' в точке E. Найдите все возможные случаи, когда длина отрезка |CE| - целое число. В ответ введите сумму найденных вариантов.

Задачу решили: 65
всего попыток: 106
Задача опубликована: 18.01.13 08:00
Прислал: Timur img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: leonid (Леонид Шляпочник)

Для данной функции f(x)=\frac{2013^{2x}}{2013^{2x}+2013}., найдите сумму 

S=\sum\limits_{k=1}^{2013} f(\frac{k}{2013}).

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.