img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Kf_GoldFish добавил комментарий к решению задачи "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 130
всего попыток: 147
Задача опубликована: 01.06.11 08:00
Прислал: Timur img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Найдите такое наименьшее натуральное число N, что N/2 — квадрат натурального числа, N/3 — куб натурального числа, а N/5 —  пятая степень натурального числа.

Задачу решили: 80
всего попыток: 93
Задача опубликована: 27.06.12 08:00
Прислал: Timur img
Источник: Малый Мехмат МГУ
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: 0Vlas

Будем строить множества из 2012 произвольных действительных чисел так, чтобы сумма любых 777 чисел из этого множества была строго положительна. Какое максимально возможное количество отрицательных чисел может быть в таком множестве?

Задачу решили: 33
всего попыток: 63
Задача опубликована: 19.12.12 08:00
Прислал: Timur img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Для двух натуральных x и k, рассмотрим два числа: x и (x+k). Определим функцию f(k)=i, где i - количество таких чисел xi, что и xi, и xi+k являются точными квадратами некоторых натуральных чисел. Например f(1)=0; f(3)=1 {x=1}; f(21)=2 {x1=4, x2=100} и т.д. В интервале 1<k<212 найдите все такие k, что f(k)=15. В ответе необходимо указать сумму всех таких k.

 

Задачу решили: 67
всего попыток: 101
Задача опубликована: 21.12.12 08:00
Прислал: Timur img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

Найдите минимальное натуральное число k такое, что при любых натуральных n, значение многочлена P(n)=7·n37+37·n7+4·k·n - делится на 259 без остатка.

Задачу решили: 65
всего попыток: 106
Задача опубликована: 18.01.13 08:00
Прислал: Timur img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: leonid (Леонид Шляпочник)

Для данной функции f(x)=\frac{2013^{2x}}{2013^{2x}+2013}., найдите сумму 

S=\sum\limits_{k=1}^{2013} f(\frac{k}{2013}).

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.